General Information of Drug Off-Target (DOT) (ID: OT5I4Y9K)

DOT Name 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2)
Synonyms EC 2.3.1.51; 1-acylglycerol-3-phosphate O-acyltransferase 2; 1-AGP acyltransferase 2; 1-AGPAT 2; Lysophosphatidic acid acyltransferase beta; LPAAT-beta
Gene Name AGPAT2
Related Disease
Congenital generalized lipodystrophy type 1 ( )
Berardinelli-Seip congenital lipodystrophy ( )
Neonatal diabetes mellitus ( )
UniProt ID
PLCB_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
2.3.1.51
Pfam ID
PF01553
Sequence
MELWPCLAAALLLLLLLVQLSRAAEFYAKVALYCALCFTVSAVASLVCLLRHGGRTVENM
SIIGWFVRSFKYFYGLRFEVRDPRRLQEARPCVIVSNHQSILDMMGLMEVLPERCVQIAK
RELLFLGPVGLIMYLGGVFFINRQRSSTAMTVMADLGERMVRENLKVWIYPEGTRNDNGD
LLPFKKGAFYLAVQAQVPIVPVVYSSFSSFYNTKKKFFTSGTVTVQVLEAIPTSGLTAAD
VPALVDTCHRAMRTTFLHISKTPQENGATAGSGVQPAQ
Function
Converts 1-acyl-sn-glycerol-3-phosphate (lysophosphatidic acid or LPA) into 1,2-diacyl-sn-glycerol-3-phosphate (phosphatidic acid or PA) by incorporating an acyl moiety at the sn-2 position of the glycerol backbone.
Tissue Specificity Expressed predominantly in adipose tissue, pancreas and liver.
KEGG Pathway
Glycerolipid metabolism (hsa00561 )
Glycerophospholipid metabolism (hsa00564 )
Metabolic pathways (hsa01100 )
Phospholipase D sig.ling pathway (hsa04072 )
Fat digestion and absorption (hsa04975 )
Reactome Pathway
Neutrophil degranulation (R-HSA-6798695 )
Synthesis of PA (R-HSA-1483166 )
BioCyc Pathway
MetaCyc:HS09990-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Congenital generalized lipodystrophy type 1 DISIDEEW Strong Autosomal recessive [1]
Berardinelli-Seip congenital lipodystrophy DISKW75N Supportive Autosomal recessive [2]
Neonatal diabetes mellitus DISFHF9K Limited Autosomal recessive [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Arsenic trioxide DM61TA4 Approved 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2) decreases the response to substance of Arsenic trioxide. [27]
Capecitabine DMTS85L Approved 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2) increases the response to substance of Capecitabine. [28]
------------------------------------------------------------------------------------
27 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate affects the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [4]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [5]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [7]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [8]
Estradiol DMUNTE3 Approved Estradiol increases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [9]
Temozolomide DMKECZD Approved Temozolomide increases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [10]
Testosterone DM7HUNW Approved Testosterone decreases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [11]
Decitabine DMQL8XJ Approved Decitabine increases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [12]
Marinol DM70IK5 Approved Marinol decreases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [13]
Selenium DM25CGV Approved Selenium increases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [14]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [15]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [16]
Gemcitabine DMSE3I7 Approved Gemcitabine decreases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [17]
Obeticholic acid DM3Q1SM Approved Obeticholic acid decreases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [18]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [19]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [20]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [9]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [5]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [21]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [22]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [23]
Milchsaure DM462BT Investigative Milchsaure increases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [24]
Oleic acid DM54O1Z Investigative Oleic acid increases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [25]
GW7647 DM9RD0C Investigative GW7647 increases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [25]
Chlorphrifos oxon DMGBT68 Investigative Chlorphrifos oxon increases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [26]
CITCO DM0N634 Investigative CITCO increases the expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase beta (AGPAT2). [25]
------------------------------------------------------------------------------------
⏷ Show the Full List of 27 Drug(s)

References

1 AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet. 2002 May;31(1):21-3. doi: 10.1038/ng880. Epub 2002 Apr 22.
2 Berardinelli-Seip Congenital Lipodystrophy. 2003 Sep 8 [updated 2016 Dec 8]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
3 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
4 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
5 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
6 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
9 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
10 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
11 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
12 Gene induction and apoptosis in human hepatocellular carci-noma cells SMMC-7721 exposed to 5-aza-2'-deoxycytidine. Chin Med J (Engl). 2007 Sep 20;120(18):1626-31.
13 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
14 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
15 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
16 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
17 Gene expression profiling of breast cancer cells in response to gemcitabine: NF-kappaB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat. 2007 Apr;102(2):157-72.
18 Pharmacotoxicology of clinically-relevant concentrations of obeticholic acid in an organotypic human hepatocyte system. Toxicol In Vitro. 2017 Mar;39:93-103.
19 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
20 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
21 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
22 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
23 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
24 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
25 Farnesol induces fatty acid oxidation and decreases triglyceride accumulation in steatotic HepaRG cells. Toxicol Appl Pharmacol. 2019 Feb 15;365:61-70.
26 Concentration-dependent effects of chlorpyrifos oxon on peroxisome proliferator-activated receptor signaling in MCF-7 cells. Toxicol In Vitro. 2022 Feb;78:105268. doi: 10.1016/j.tiv.2021.105268. Epub 2021 Oct 29.
27 The NRF2-mediated oxidative stress response pathway is associated with tumor cell resistance to arsenic trioxide across the NCI-60 panel. BMC Med Genomics. 2010 Aug 13;3:37. doi: 10.1186/1755-8794-3-37.
28 Gene expression analysis using human cancer xenografts to identify novel predictive marker genes for the efficacy of 5-fluorouracil-based drugs. Cancer Sci. 2006 Jun;97(6):510-22. doi: 10.1111/j.1349-7006.2006.00204.x.