General Information of Drug Off-Target (DOT) (ID: OT61RBF5)

DOT Name Eukaryotic translation initiation factor 3 subunit H (EIF3H)
Synonyms eIF3h; Eukaryotic translation initiation factor 3 subunit 3; eIF-3-gamma; eIF3 p40 subunit
Gene Name EIF3H
Related Disease
Non-small-cell lung cancer ( )
Advanced cancer ( )
Benign prostatic hyperplasia ( )
Breast neoplasm ( )
Colorectal carcinoma ( )
Colorectal neoplasm ( )
Cutaneous mastocytosis ( )
Endometrial cancer ( )
Endometrial carcinoma ( )
Hepatitis B virus infection ( )
Hepatocellular carcinoma ( )
Metastatic malignant neoplasm ( )
Carcinoma ( )
Gastric cancer ( )
Stomach cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Intellectual disability ( )
Prostate neoplasm ( )
UniProt ID
EIF3H_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3J8B; 3J8C; 6YBD; 6ZMW; 6ZON; 6ZP4; 6ZVJ; 7A09; 7QP6; 7QP7; 8PPL
Pfam ID
PF19445 ; PF01398
Sequence
MASRKEGTGSTATSSSSTAGAAGKGKGKGGSGDSAVKQVQIDGLVVLKIIKHYQEEGQGT
EVVQGVLLGLVVEDRLEITNCFPFPQHTEDDADFDEVQYQMEMMRSLRHVNIDHLHVGWY
QSTYYGSFVTRALLDSQFSYQHAIEESVVLIYDPIKTAQGSLSLKAYRLTPKLMEVCKEK
DFSPEALKKANITFEYMFEEVPIVIKNSHLINVLMWELEKKSAVADKHELLSLASSNHLG
KNLQLLMDRVDEMSQDIVKYNTYMRNTSKQQQQKHQYQQRRQQENMQRQSRGEPPLPEED
LSKLFKPPQPPARMDSLLIAGQINTYCQNIKEFTAQNLGKLFMAQALQEYNN
Function
Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression.
KEGG Pathway
Measles (hsa05162 )
Reactome Pathway
Translation initiation complex formation (R-HSA-72649 )
Formation of a pool of free 40S subunits (R-HSA-72689 )
Formation of the ternary complex, and subsequently, the 43S complex (R-HSA-72695 )
Ribosomal scanning and start codon recognition (R-HSA-72702 )
GTP hydrolysis and joining of the 60S ribosomal subunit (R-HSA-72706 )
L13a-mediated translational silencing of Ceruloplasmin expression (R-HSA-156827 )

Molecular Interaction Atlas (MIA) of This DOT

19 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Non-small-cell lung cancer DIS5Y6R9 Definitive Biomarker [1]
Advanced cancer DISAT1Z9 Strong Biomarker [2]
Benign prostatic hyperplasia DISI3CW2 Strong Altered Expression [3]
Breast neoplasm DISNGJLM Strong Biomarker [4]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [5]
Colorectal neoplasm DISR1UCN Strong Biomarker [6]
Cutaneous mastocytosis DISLBZEF Strong Altered Expression [7]
Endometrial cancer DISW0LMR Strong Altered Expression [8]
Endometrial carcinoma DISXR5CY Strong Altered Expression [8]
Hepatitis B virus infection DISLQ2XY Strong Altered Expression [7]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [7]
Metastatic malignant neoplasm DIS86UK6 Strong Altered Expression [9]
Carcinoma DISH9F1N moderate Altered Expression [3]
Gastric cancer DISXGOUK moderate Biomarker [10]
Stomach cancer DISKIJSX moderate Biomarker [10]
Breast cancer DIS7DPX1 Limited Genetic Variation [11]
Breast carcinoma DIS2UE88 Limited Genetic Variation [11]
Intellectual disability DISMBNXP Limited Biomarker [12]
Prostate neoplasm DISHDKGQ Limited Biomarker [3]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Eukaryotic translation initiation factor 3 subunit H (EIF3H). [13]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Eukaryotic translation initiation factor 3 subunit H (EIF3H). [14]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Eukaryotic translation initiation factor 3 subunit H (EIF3H). [15]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Eukaryotic translation initiation factor 3 subunit H (EIF3H). [16]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Eukaryotic translation initiation factor 3 subunit H (EIF3H). [17]
Benzatropine DMF7EXL Approved Benzatropine decreases the expression of Eukaryotic translation initiation factor 3 subunit H (EIF3H). [18]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Eukaryotic translation initiation factor 3 subunit H (EIF3H). [21]
chloropicrin DMSGBQA Investigative chloropicrin affects the expression of Eukaryotic translation initiation factor 3 subunit H (EIF3H). [23]
methyl p-hydroxybenzoate DMO58UW Investigative methyl p-hydroxybenzoate decreases the expression of Eukaryotic translation initiation factor 3 subunit H (EIF3H). [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Eukaryotic translation initiation factor 3 subunit H (EIF3H). [19]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Eukaryotic translation initiation factor 3 subunit H (EIF3H). [20]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Eukaryotic translation initiation factor 3 subunit H (EIF3H). [22]
------------------------------------------------------------------------------------

References

1 MYC and EIF3H Coamplification significantly improve response and survival of non-small cell lung cancer patients (NSCLC) treated with gefitinib.J Thorac Oncol. 2009 Apr;4(4):472-8. doi: 10.1097/JTO.0b013e31819a5767.
2 mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis.Nature. 2018 Sep;561(7724):556-560. doi: 10.1038/s41586-018-0538-8. Epub 2018 Sep 19.
3 Expression and copy number analysis of TRPS1, EIF3S3 and MYC genes in breast and prostate cancer.Br J Cancer. 2004 Mar 8;90(5):1041-6. doi: 10.1038/sj.bjc.6601648.
4 Amplification and overexpression of p40 subunit of eukaryotic translation initiation factor 3 in breast and prostate cancer.Am J Pathol. 1999 Jun;154(6):1777-83. doi: 10.1016/S0002-9440(10)65433-8.
5 Integrated Analysis of the Gene Expression Changes During Colorectal Cancer Progression by Bioinformatic Methods.J Comput Biol. 2019 Oct;26(10):1168-1176. doi: 10.1089/cmb.2019.0056. Epub 2019 Jun 26.
6 A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3.Nat Genet. 2008 May;40(5):623-30. doi: 10.1038/ng.111. Epub 2008 Mar 30.
7 PTK2 and EIF3S3 genes may be amplification targets at 8q23-q24 and are associated with large hepatocellular carcinomas.Hepatology. 2003 Nov;38(5):1242-9. doi: 10.1053/jhep.2003.50457.
8 The Prognostic Significance of Eukaryotic Translation Initiation Factors (eIFs) in Endometrial Cancer.Int J Mol Sci. 2019 Dec 6;20(24):6169. doi: 10.3390/ijms20246169.
9 Amplification of EIF3S3 gene is associated with advanced stage in prostate cancer.Am J Pathol. 2001 Dec;159(6):2089-94. doi: 10.1016/S0002-9440(10)63060-X.
10 Eukaryotic translation initiation factor EIF3H potentiates gastric carcinoma cell proliferation.Tissue Cell. 2018 Aug;53:23-29. doi: 10.1016/j.tice.2018.05.006. Epub 2018 May 8.
11 Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade.Hum Mol Genet. 2014 Nov 15;23(22):6034-46. doi: 10.1093/hmg/ddu300. Epub 2014 Jun 13.
12 Microcephaly-thin corpus callosum syndrome maps to 8q23.2-q24.12.Pediatr Neurol. 2012 Jun;46(6):363-8. doi: 10.1016/j.pediatrneurol.2012.03.014.
13 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
14 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
15 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
16 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
17 Proteomic analysis of antiproliferative effects by treatment of 5-fluorouracil in cervical cancer cells. DNA Cell Biol. 2004 Nov;23(11):769-76.
18 Cannabidiol Displays Proteomic Similarities to Antipsychotics in Cuprizone-Exposed Human Oligodendrocytic Cell Line MO3.13. Front Mol Neurosci. 2021 May 28;14:673144. doi: 10.3389/fnmol.2021.673144. eCollection 2021.
19 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018 Nov;121:214-223. doi: 10.1016/j.fct.2018.08.034. Epub 2018 Aug 26.
20 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
21 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
22 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
23 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
24 Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells. Arch Toxicol. 2020 Jan;94(1):127-140. doi: 10.1007/s00204-019-02629-w. Epub 2019 Nov 20.