General Information of Disease (ID: DISI3CW2)

Disease Name Benign prostatic hyperplasia
Synonyms
BPH; prostatic hyperplasia, benign; prostate hypertrophy; prostatic hypertrophy; benign prostatic Hypertrophy; benign prostatic hyperplasia; benign prostatic hypertrophy; benign hyperplasia of the prostate; benign prostatic hyperplasia (disease); benign hyperplasia of prostate; benign prostatic hyperplasia - BPH; benign prostate hyperplasia
Disease Class GA90: Prostate hyperplasia
Definition
A non-cancerous nodular enlargement of the prostate gland. It is characterized by the presence of epithelial cell nodules, and stromal nodules containing fibrous and smooth muscle elements. It is the most common urologic disorder in men, causing blockage of urine flow.
Disease Hierarchy
DISFVG19: Prostate disease
DISK4DFB: Hyperplasia
DISI3CW2: Benign prostatic hyperplasia
ICD Code
ICD-11
ICD-11: GA90
ICD-10
ICD-10: N40
ICD-9
ICD-9: 600
Expand ICD-11
'GA90
Expand ICD-10
'N40
Expand ICD-9
600
Disease Identifiers
MONDO ID
MONDO_0010811
MESH ID
D011470
UMLS CUI
C1704272
OMIM ID
600082
MedGen ID
312369
HPO ID
HP:0008711
SNOMED CT ID
266569009

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 11 Approved Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Alfuzosin DMZVMKF Approved Small molecular drug [1]
Doxazosin DM9PLRH Approved Small molecular drug [2]
Dutasteride DMQ4TJK Approved Small molecular drug [3]
Finasteride DMWV3TZ Approved Small molecular drug [4]
Prazosin DMCD9YG Approved Small molecular drug [5]
Serenoa repens extract DMQY0UW Approved NA [5]
SILODOSIN DMJSBT6 Approved Small molecular drug [6]
Tadalafil DMJZHT1 Approved Small molecular drug [7]
Tamsulosin DM5QF9V Approved Small molecular drug [8]
Terazosin DM3JCVS Approved Small molecular drug [9]
Xatral DMLHOA0 Approved Small molecular drug [5]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
This Disease is Treated as An Indication in 1 Clinical Trial Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Dutasteride + tamsulosin DM6P8HU Phase 3 Combination drug (small molecular drug) [10]
------------------------------------------------------------------------------------
This Disease is Treated as An Indication in 2 Patented Agent(s)
Drug Name Drug ID Highest Status Drug Type REF
PMID30124346-Compound-LDT66 DMJMTNL Patented Small molecular drug [11]
PMID30124346-Compound-LDT8 DM5MUNG Patented Small molecular drug [11]
------------------------------------------------------------------------------------
This Disease is Treated as An Indication in 1 Discontinued Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Lonidamine DMCU5LD Discontinued in Phase 3 Small molecular drug [12]
------------------------------------------------------------------------------------

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 94 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
ADCYAP1 TTW4LYC Limited Altered Expression [13]
ADCYAP1R1 TT5OREU Limited Biomarker [13]
CFD TT8D13I Limited Altered Expression [14]
CGA TTFC29G Limited Altered Expression [15]
EPHA6 TTFAHWI Limited Altered Expression [16]
HAAO TTWON83 Limited Posttranslational Modification [17]
IMP3 TTEJA2R Limited Biomarker [18]
PCNA TTLG1PD Limited Biomarker [19]
PDE5A TTJ0IQB Limited Biomarker [20]
PRL TTJ2TSA Limited Biomarker [21]
THRB TTGER3L Limited Biomarker [22]
TRPV6 TTBK14N Limited Altered Expression [23]
TLN1 TTQSMFG Disputed Altered Expression [24]
BCL11A TTR61MW moderate Genetic Variation [25]
DKK3 TTY2ZV6 moderate Altered Expression [26]
FGF7 TTFY134 moderate Biomarker [27]
TXNRD3 TTDYFVB moderate Biomarker [28]
VDR TTK59TV moderate Genetic Variation [29]
ADRA1B TTBRKXS Strong Biomarker [30]
ADRA1D TT34BHT Strong Biomarker [30]
AMACR TTLN1AP Strong Altered Expression [31]
BPI TTXCSDR Strong Genetic Variation [32]
CCNB1 TT9P6OW Strong Biomarker [33]
CFI TT6ATLX Strong Altered Expression [34]
CGB3 TTUH273 Strong Altered Expression [35]
CHRM2 TTYEG6Q Strong Altered Expression [36]
CHRM3 TTQ13Z5 Strong Genetic Variation [37]
CRAT TTC8M31 Strong Altered Expression [38]
CYP11A1 TTSYVO6 Strong Biomarker [39]
CYP3A4 TTWP7HQ Strong Biomarker [40]
DUT TTH6MBO Strong Biomarker [41]
ENPP2 TTSCIM2 Strong Altered Expression [42]
GDF15 TT4MXVG Strong Altered Expression [43]
GNRH1 TT0ID4A Strong Biomarker [44]
GNRHR TT8R70G Strong Altered Expression [45]
GPER1 TTDSB34 Strong Biomarker [46]
GSR TTEP6RV Strong Biomarker [47]
HOXA7 TTMRE4Q Strong Altered Expression [48]
HPN TT25MVL Strong Altered Expression [49]
HSD17B1 TTIWB6L Strong Biomarker [50]
HSD17B2 TT0PT1R Strong Biomarker [51]
IGFBP5 TTDWEA8 Strong Biomarker [52]
IL10RB TTJTRMK Strong Genetic Variation [53]
IL21R TTZO9B0 Strong Biomarker [54]
ITGA4 TTJMF9P Strong Altered Expression [55]
KDM4C TTV8CRH Strong Altered Expression [56]
KLB TTARBVH Strong Altered Expression [57]
KLK2 TTJLNAW Strong Biomarker [58]
KLK4 TT4319X Strong Altered Expression [59]
KLK5 TTULSEW Strong Altered Expression [60]
LAMP2 TTULDG7 Strong Altered Expression [61]
LASP1 TTZJA87 Strong Altered Expression [62]
LONP1 TTM1VPZ Strong Altered Expression [63]
LTBR TTFO0PM Strong Biomarker [64]
LYZ TTAOZBW Strong Biomarker [65]
MAP3K3 TTJZNIG Strong Altered Expression [66]
MAP4K4 TT6NI13 Strong Biomarker [66]
MAPK7 TTU6FSC Strong Biomarker [66]
MAZ TT059DA Strong Altered Expression [67]
MSMB TTYH1ZK Strong Biomarker [68]
MSR1 TT2TDH9 Strong Genetic Variation [69]
NPEPPS TT371QC Strong Altered Expression [70]
ODC1 TTUMGNO Strong Biomarker [71]
OR51E2 TTZRE3C Strong Biomarker [72]
OXTR TTSCIUP Strong Altered Expression [73]
P2RX1 TTJW7B3 Strong Altered Expression [74]
PGC TT7K6AD Strong Altered Expression [75]
PIM1 TTTN5QW Strong Altered Expression [76]
PIM2 TT69J2Z Strong Altered Expression [77]
PLD1 TT3T17P Strong Altered Expression [78]
PMS1 TTX1ISF Strong Altered Expression [79]
PSCA TT9T4AV Strong Altered Expression [80]
RNASEL TT7V0K4 Strong Genetic Variation [69]
SEPTIN6 TTAGE7U Strong Biomarker [81]
SERPINB5 TT1KW50 Strong Biomarker [82]
SLC33A1 TTL69WB Strong Biomarker [83]
SLC52A2 TT6TKEN Strong Altered Expression [27]
SLC7A1 TT4S150 Strong Altered Expression [38]
SMAD9 TTX8EBV Strong Altered Expression [84]
STEAP1 TT9E64S Strong Altered Expression [85]
STEAP2 TTOXF5J Strong Altered Expression [85]
TGFB3 TTWOMY8 Strong Altered Expression [86]
TMPRSS2 TT1GM2Z Strong Biomarker [87]
VEGFB TTPJQHE Strong Altered Expression [88]
VIPR1 TTCL30I Strong Biomarker [89]
CDC37 TT5SOEU Definitive Altered Expression [90]
CXCR5 TTIW59R Definitive Biomarker [91]
FCGR1A TTZK4I3 Definitive Altered Expression [92]
FGF10 TTNPEFX Definitive Biomarker [93]
KLK7 TTE6GTB Definitive Altered Expression [94]
RCE1 TT2AP5B Definitive Altered Expression [95]
SLC2A9 TTIF3GB Definitive Altered Expression [96]
SSTR1 TTIND6G Definitive Altered Expression [97]
SSTR2 TTZ6T9E Definitive Altered Expression [97]
------------------------------------------------------------------------------------
⏷ Show the Full List of 94 DTT(s)
This Disease Is Related to 5 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
ATP12A DT5NLZA moderate Altered Expression [98]
KCNK2 DTENHUP Strong Altered Expression [99]
SLC18A1 DTM953D Strong Biomarker [100]
SLC25A21 DT2UQYR Strong Biomarker [71]
SLC2A6 DTS4MKQ Definitive Altered Expression [96]
------------------------------------------------------------------------------------
This Disease Is Related to 13 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
GCLC DESYL1F moderate Genetic Variation [101]
CYP3A43 DEO1IE3 Strong Genetic Variation [69]
GGCT DEKW6PB Strong Genetic Variation [102]
HSD17B3 DEX8J7E Strong Biomarker [50]
HSD17B7 DEDMWFX Strong Altered Expression [103]
PSAT1 DEBS17P Strong Altered Expression [70]
UGT1A10 DEL5N6Y Strong Genetic Variation [104]
UGT1A4 DELOY3P Strong Genetic Variation [104]
UGT1A6 DESD26P Strong Genetic Variation [104]
UGT1A7 DEZO4N3 Strong Genetic Variation [104]
UGT1A8 DE2GB8N Strong Genetic Variation [104]
UGT2B15 DENZ6B1 Strong Genetic Variation [105]
UGT2B17 DEAZDL8 Strong Genetic Variation [105]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 DME(s)
This Disease Is Related to 156 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
ALOX15B OTWQQ08W Limited Biomarker [106]
ARIH1 OTO3XDR2 Limited Biomarker [107]
CCL19 OTQ2UJMH Limited Biomarker [108]
DLEC1 OTMKKBUW Limited Altered Expression [109]
GADD45GIP1 OT4IZ4TP Limited Biomarker [110]
HOXD3 OTBUZ35T Limited Biomarker [17]
SMURF2 OT3TRVL7 Limited Altered Expression [111]
SPINT1 OT1CLR5L Limited Altered Expression [112]
TDRD1 OT0CBCI3 Limited Biomarker [17]
C17orf49 OTKPULAA Disputed Altered Expression [113]
BET1L OT5QVYBZ moderate Genetic Variation [25]
CLPTM1L OTDJWQXI moderate Genetic Variation [25]
CREBRF OT2GK1HI moderate Altered Expression [114]
ELOVL6 OTB26UJJ moderate Genetic Variation [101]
GATA5 OTO81B63 moderate Genetic Variation [25]
HEY2 OTU4J3ZI moderate Biomarker [115]
HNF1B OTSYIC3T moderate Genetic Variation [25]
LILRA3 OTBNQCOS moderate Biomarker [116]
NRBP1 OTRWEJ65 moderate Altered Expression [117]
SWAP70 OTPHT2QD moderate Biomarker [118]
SYN3 OTSGYNA5 moderate Genetic Variation [101]
TBX3 OTM64N7K moderate Genetic Variation [25]
TM4SF1 OTY0ECQN moderate Altered Expression [119]
AFAP1 OTR473H8 Strong Altered Expression [120]
AKAP12 OTCVRDDX Strong Posttranslational Modification [121]
ALDH7A1 OTV57BZD Strong Biomarker [122]
ALKBH3 OTS1CD9Z Strong Altered Expression [123]
ANKS4B OT1MREUS Strong Biomarker [124]
AP3B1 OTYTIH5Q Strong Altered Expression [125]
ARF6 OTVV7KJO Strong Altered Expression [126]
ARL11 OTF6UDDB Strong Altered Expression [127]
ATG9A OTAZWZH7 Strong Altered Expression [128]
BAMBI OTCEJ8W5 Strong Altered Expression [129]
BMP5 OTC0Y6E0 Strong Altered Expression [130]
CANX OTYP1F6J Strong Biomarker [131]
CAV2 OT1FGRQX Strong Altered Expression [132]
CAV3 OTWSFDB4 Strong Altered Expression [132]
CBX4 OT4XVRRF Strong Genetic Variation [133]
CCDC8 OTO295IH Strong Biomarker [131]
CD177 OTS79FNF Strong Altered Expression [134]
CD81 OTQFXNAZ Strong Genetic Variation [135]
CD82 OTH8MC64 Strong Altered Expression [136]
CDC6 OTX93FE7 Strong Altered Expression [137]
CEP55 OTGSG2PA Strong Altered Expression [138]
CIP2A OTVS2GXA Strong Altered Expression [139]
CLDN3 OT71MN9S Strong Altered Expression [140]
CSTA OT1K68KE Strong Biomarker [141]
CTNND2 OTYKE30Y Strong Altered Expression [142]
DYNLL1 OTR69LHT Strong Biomarker [143]
EIF3H OT61RBF5 Strong Altered Expression [144]
ELAC2 OTY3BOF6 Strong Biomarker [145]
ELL2 OTZJRTFM Strong Biomarker [146]
ERG OTOTX9VU Strong Biomarker [87]
FGD4 OTYXJQCW Strong Altered Expression [147]
FGF17 OTAQSFZ2 Strong Altered Expression [148]
FGL1 OTT0QHQ1 Strong Altered Expression [125]
FLVCR1 OT9XCFOC Strong Biomarker [149]
FOXF1 OT2CJZ5K Strong Altered Expression [150]
FOXF2 OTV20NGX Strong Altered Expression [150]
FTL OTYQA8A6 Strong Altered Expression [151]
FUZ OTC427QQ Strong Altered Expression [152]
FXYD3 OT9PPRHE Strong Altered Expression [153]
GALNT3 OT7M67WT Strong Altered Expression [154]
GATA6 OTO2BC0F Strong Altered Expression [155]
GHRH OT94U6MO Strong Biomarker [156]
GIT1 OTHO92S5 Strong Altered Expression [38]
GLCE OTPRSHX5 Strong Altered Expression [157]
GPC1 OTQKRSSV Strong Biomarker [158]
GPRC5A OTPOCWR7 Strong Altered Expression [82]
GRP OT8JDFNI Strong Biomarker [159]
GSTM3 OTLA2WJT Strong Genetic Variation [160]
GTF2H2 OTK72L9I Strong Genetic Variation [161]
HBS1L OTA3U1N6 Strong Altered Expression [162]
HHEX OTLIUVYX Strong Altered Expression [163]
HNRNPM OTFU3OEZ Strong Altered Expression [164]
HOXC6 OTBCRAZV Strong Altered Expression [31]
HPS1 OTKS5I7T Strong Altered Expression [125]
HTRA2 OTC7616F Strong Altered Expression [165]
IFI44 OTOKSZVA Strong Genetic Variation [161]
IL10RA OTOX3D1D Strong Genetic Variation [53]
IL17RB OT0KDNSF Strong Altered Expression [166]
INSL3 OT7KUNTE Strong Altered Expression [167]
IRX4 OT0TV6WK Strong Genetic Variation [168]
ITGBL1 OTJDHE17 Strong Altered Expression [48]
KIDINS220 OTLBH2MA Strong Genetic Variation [169]
KLK11 OT5PKX7Y Strong Altered Expression [170]
KLK15 OT7BVG17 Strong Altered Expression [171]
KRT15 OTS6WLF7 Strong Altered Expression [48]
LEMD1 OTII3FTO Strong Altered Expression [172]
LMLN OTQF0JPY Strong Biomarker [173]
MAGI2 OTXDDKZS Strong Biomarker [174]
MARCHF5 OTBK6BBM Strong Genetic Variation [29]
MED15 OT0D0JVD Strong Altered Expression [82]
MEIS2 OTG4ADLM Strong Altered Expression [175]
MZB1 OT071TET Strong Altered Expression [13]
NAIP OTLA925F Strong Altered Expression [176]
NCOA1 OTLIUJQD Strong Biomarker [177]
NDRG3 OTJTJCHD Strong Altered Expression [178]
NFIB OTX94PD0 Strong Biomarker [179]
NPRL2 OTOB10MO Strong Altered Expression [180]
OR51E1 OTB7Q65H Strong Altered Expression [181]
PAGE4 OT2VLWT0 Strong Biomarker [182]
PANK2 OTFBW889 Strong Biomarker [124]
PAQR3 OTTKJ9Y4 Strong Posttranslational Modification [183]
PIK3R3 OTXGJ8N1 Strong Altered Expression [184]
PLAG1 OTT9AJQY Strong Altered Expression [70]
PLCL1 OTJL2C79 Strong Biomarker [185]
PLXNA1 OTN0BING Strong Biomarker [186]
PMEPA1 OTY8Z9UF Strong Biomarker [72]
PPP1R14A OTQODWZB Strong Altered Expression [155]
PRAC1 OT7MCG86 Strong Biomarker [187]
PRDX3 OTLB2WEU Strong Altered Expression [188]
PRG2 OT0BCPQG Strong Biomarker [189]
PRLH OTJBP360 Strong Altered Expression [163]
PROS1 OTXQWNOI Strong Altered Expression [70]
PSMG1 OTZ5I6UM Strong Biomarker [190]
PTOV1 OT94WT5X Strong Altered Expression [191]
PXN OTVMMUOF Strong Altered Expression [192]
PYCR1 OTQHB52T Strong Genetic Variation [193]
QRFPR OT31N14I Strong Altered Expression [194]
RABGAP1L OT7QO47I Strong Altered Expression [195]
RANBP3L OTKOCHVJ Strong Genetic Variation [196]
RARRES1 OTETUPP5 Strong Altered Expression [82]
RASSF10 OTGB7EBG Strong Altered Expression [197]
RFX6 OT8H77DL Strong Genetic Variation [168]
RMC1 OT7K8MTJ Strong Altered Expression [43]
RNF2 OTFPLOIN Strong Altered Expression [198]
RPL10 OTBHOZGC Strong Biomarker [186]
RPS10 OTE3VSAH Strong Biomarker [199]
S100A2 OTTGHJ1H Strong Posttranslational Modification [200]
SEMA3F OTQFMS8S Strong Altered Expression [201]
SETDB1 OTWVUA1B Strong Altered Expression [202]
SFN OTLJCZ1U Strong Biomarker [82]
SMARCAL1 OTTKXLUZ Strong Biomarker [124]
SOX11 OT4LG7LA Strong Posttranslational Modification [203]
SPATA19 OT47CHQR Strong Altered Expression [204]
SPOP OTP0107S Strong Biomarker [61]
SSBP2 OTYG1G80 Strong Genetic Variation [205]
STAG1 OT564IX4 Strong Altered Expression [72]
SULF1 OTJCNCO0 Strong Altered Expression [42]
TBC1D9 OTSSCTB5 Strong Posttranslational Modification [206]
TGM4 OTORRCG6 Strong Altered Expression [48]
TMEM45B OTVQCO8N Strong Altered Expression [207]
TMPRSS13 OTMAOAP3 Strong Biomarker [173]
TRPS1 OT7XPPEL Strong Altered Expression [144]
TSPAN1 OTZQPIYK Strong Altered Expression [208]
ANXA7 OTLMD0TK Definitive Biomarker [209]
CDO1 OTLG1P77 Definitive Biomarker [210]
EFNA2 OTEAUKRX Definitive Biomarker [211]
GUCA2B OTZERX04 Definitive Biomarker [212]
IMMT OTBDSLE7 Definitive Biomarker [213]
INHA OT7HWCO3 Definitive Altered Expression [214]
NANOS2 OTFM2IDJ Definitive Altered Expression [215]
NELL2 OTS4MJZ7 Definitive Altered Expression [216]
SIM2 OT0QWHK4 Definitive Altered Expression [217]
TPM1 OTD73X6R Definitive Altered Expression [218]
------------------------------------------------------------------------------------
⏷ Show the Full List of 156 DOT(s)

References

1 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 7109).
2 Doxazosin FDA Label
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 7457).
4 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 6818).
5 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services. 2015
6 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 493).
7 Tadalafil FDA Label
8 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 488).
9 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 7302).
10 ClinicalTrials.gov (NCT00090103) Benign Prostatic Hyperplasia Trial With Dutasteride And Tamsulosin Combination Treatment. U.S. National Institutes of Health.
11 5-HT1A receptor ligands and their therapeutic applications: review of new patents.Expert Opin Ther Pat. 2018 Sep;28(9):679-689.
12 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800022059)
13 PAC1-R null isoform expression in human prostate cancer tissue.Prostate. 2006 Apr 1;66(5):514-21. doi: 10.1002/pros.20356.
14 Adiponectin as a potential tumor suppressor inhibiting epithelial-to-mesenchymal transition but frequently silenced in prostate cancer by promoter methylation.Prostate. 2015 Aug 1;75(11):1197-205. doi: 10.1002/pros.23002. Epub 2015 Apr 15.
15 CGA gene (coding for the alpha subunit of glycoprotein hormones) overexpression in ER alpha-positive prostate tumors.Eur Urol. 2002 Mar;41(3):335-41. doi: 10.1016/s0302-2838(02)00020-9.
16 EphA6 promotes angiogenesis and prostate cancer metastasis and is associated with human prostate cancer progression.Oncotarget. 2015 Sep 8;6(26):22587-97. doi: 10.18632/oncotarget.4088.
17 Methylation of PITX2, HOXD3, RASSF1 and TDRD1 predicts biochemical recurrence in high-risk prostate cancer.J Cancer Res Clin Oncol. 2014 Nov;140(11):1849-61. doi: 10.1007/s00432-014-1738-8. Epub 2014 Jun 18.
18 Prognostic value of tissue and circulating levels of IMP3 in prostate cancer.Int J Cancer. 2014 Oct 1;135(7):1596-604. doi: 10.1002/ijc.28808. Epub 2014 Mar 4.
19 Cynomorium songaricum Rupr demonstrates phytoestrogenic or phytoandrogenic like activities that attenuates benign prostatic hyperplasia via regulating steroid 5--reductase.J Ethnopharmacol. 2019 May 10;235:65-74. doi: 10.1016/j.jep.2019.01.038. Epub 2019 Jan 29.
20 Regulation of PDE5 expression in normal prostate, benign prostatic hyperplasia, and adenocarcinoma.Andrology. 2020 Mar;8(2):427-433. doi: 10.1111/andr.12695. Epub 2019 Aug 21.
21 Molecular characterization of prostate hyperplasia in prolactin-transgenic mice by using cDNA representational difference analysis.Prostate. 2002 Jul 1;52(2):139-49. doi: 10.1002/pros.10102.
22 Detection of Loss of Heterozygosity (LOH) Using Circulating Cell-free DNA (cfDNA) by Fluorescence-based Multiplex PCR for Identification of Patients With Prostate Cancer.Appl Immunohistochem Mol Morphol. 2018 Nov/Dec;26(10):749-759. doi: 10.1097/PAI.0000000000000514.
23 TRPV6 alleles do not influence prostate cancer progression.BMC Cancer. 2009 Oct 26;9:380. doi: 10.1186/1471-2407-9-380.
24 Upregulation of Talin-1 expression associates with advanced pathological features and predicts lymph node metastases and biochemical recurrence of prostate cancer.Medicine (Baltimore). 2016 Jul;95(29):e4326. doi: 10.1097/MD.0000000000004326.
25 Genome-wide associations for benign prostatic hyperplasia reveal a genetic correlation with serum levels of PSA.Nat Commun. 2018 Nov 8;9(1):4568. doi: 10.1038/s41467-018-06920-9.
26 Protective effect of stromal Dickkopf-3 in prostate cancer: opposing roles for TGFBI and ECM-1.Oncogene. 2018 Sep;37(39):5305-5324. doi: 10.1038/s41388-018-0294-0. Epub 2018 Jun 1.
27 Protease-activated receptor-1 upregulates fibroblast growth factor 7 in stroma of benign prostatic hyperplasia.Prostate. 2008 Jul 1;68(10):1064-75. doi: 10.1002/pros.20767.
28 Stromal response to prostate cancer: nanotechnology-based detection of thioredoxin-interacting protein partners distinguishes prostate cancer associated stroma from that of benign prostatic hyperplasia.PLoS One. 2013 Jun 6;8(6):e60562. doi: 10.1371/journal.pone.0060562. Print 2013.
29 Meta-analysis of vitamin D receptor gene polymorphisms and benign prostatic hyperplasia risk.Mol Biol Rep. 2014 Oct;41(10):6713-7. doi: 10.1007/s11033-014-3554-2. Epub 2014 Jul 3.
30 The prognostic value of ADRA1 subfamily genes in gastric carcinoma.Oncol Lett. 2019 Sep;18(3):3150-3158. doi: 10.3892/ol.2019.10660. Epub 2019 Jul 24.
31 DNA methylation status is more reliable than gene expression at detecting cancer in prostate biopsy.Br J Cancer. 2014 Aug 12;111(4):781-9. doi: 10.1038/bjc.2014.337. Epub 2014 Jun 17.
32 Is reduced CAG repeat length in androgen receptor gene associated with risk of prostate cancer in Indian population?.Clin Genet. 2005 Jul;68(1):55-60. doi: 10.1111/j.1399-0004.2005.00450.x.
33 Identification of key genes and pathways in benign prostatic hyperplasia.J Cell Physiol. 2019 Nov;234(11):19942-19950. doi: 10.1002/jcp.28592. Epub 2019 Apr 4.
34 Activation of innate anti-viral immune response genes in symptomatic benign prostatic hyperplasia.Genes Immun. 2012 Oct;13(7):566-72. doi: 10.1038/gene.2012.40. Epub 2012 Sep 6.
35 Expression of luteinizing hormone/human chorionic gonadotropin receptor gene in benign prostatic hyperplasia and in prostate carcinoma in humans.Biol Reprod. 1997 Jan;56(1):67-72. doi: 10.1095/biolreprod56.1.67.
36 The Obstructed Bladder: Expression of Collagen, Matrix Metalloproteinases, Muscarinic Receptors, and Angiogenic and Neurotrophic Factors in Patients With Benign Prostatic Hyperplasia.Urology. 2017 Aug;106:167-172. doi: 10.1016/j.urology.2017.05.010. Epub 2017 May 12.
37 Effects of Fungicide Propiconazole on the Yeast-Like Symbiotes in Brown Planthopper (BPH, Nilaparvata lugens Stl) and Its Role in Controlling BPH Infestation.Front Physiol. 2019 Feb 11;10:89. doi: 10.3389/fphys.2019.00089. eCollection 2019.
38 CaT1 expression correlates with tumor grade in prostate cancer. Biochem Biophys Res Commun. 2001 Apr 6;282(3):729-34.
39 Evidence for steroidogenic potential in human prostate cell lines and tissues.Am J Pathol. 2012 Sep;181(3):1078-87. doi: 10.1016/j.ajpath.2012.06.009. Epub 2012 Jul 13.
40 Association of polymorphisms in CYP19A1 and CYP3A4 genes with lower urinary tract symptoms, prostate volume, uroflow and PSA in a population-based sample.World J Urol. 2011 Apr;29(2):143-8. doi: 10.1007/s00345-009-0489-7. Epub 2009 Nov 17.
41 A prospective randomised placebo-controlled study of the impact of dutasteride/tamsulosin combination therapy on sexual function domains in sexually active men with lower urinary tract symptoms (LUTS) secondary to benign prostatic hyperplasia (BPH).BJU Int. 2018 Apr;121(4):647-658. doi: 10.1111/bju.14057. Epub 2017 Nov 16.
42 Distinctive gene expression of prostatic stromal cells cultured from diseased versus normal tissues.J Cell Physiol. 2007 Jan;210(1):111-21. doi: 10.1002/jcp.20828.
43 Relevance of MIC-1 in the Era of PSA as a Serum Based Predictor of Prostate Cancer: A Critical Evaluation.Sci Rep. 2017 Dec 4;7(1):16824. doi: 10.1038/s41598-017-17207-2.
44 Receptors for luteinizing hormone-releasing hormone (LHRH) in benign prostatic hyperplasia (BPH) as potential molecular targets for therapy with LHRH antagonist cetrorelix.Prostate. 2011 Apr;71(5):445-52. doi: 10.1002/pros.21258. Epub 2010 Sep 21.
45 The GnRH Antagonist Degarelix Directly Inhibits Benign Prostate Hyperplasia Cell Growth.Horm Metab Res. 2015 Nov;47(12):925-31. doi: 10.1055/s-0035-1555899. Epub 2015 Jul 21.
46 Role of GPR30 in estrogen-induced prostate epithelial apoptosis and benign prostatic hyperplasia.Biochem Biophys Res Commun. 2017 Jun 3;487(3):517-524. doi: 10.1016/j.bbrc.2017.04.047. Epub 2017 Apr 12.
47 Protective role of diosmin against testosterone propionate-induced prostatic hyperplasia in Wistar rats: Plausible role of oxidative stress and inflammation.Hum Exp Toxicol. 2020 Sep;39(9):1133-1146. doi: 10.1177/0960327119889655. Epub 2019 Dec 4.
48 Molecular analyses of prostate tumors for diagnosis of malignancy on fine-needle aspiration biopsies.Oncotarget. 2017 Nov 6;8(62):104761-104771. doi: 10.18632/oncotarget.22289. eCollection 2017 Dec 1.
49 Hepsin is highly over expressed in and a new candidate for a prognostic indicator in prostate cancer.J Urol. 2004 Jan;171(1):187-91. doi: 10.1097/01.ju.0000101622.74236.94.
50 STX2171, a 17-hydroxysteroid dehydrogenase type 3 inhibitor, is efficacious in vivo in a novel hormone-dependent prostate cancer model.Endocr Relat Cancer. 2013 Feb 18;20(1):53-64. doi: 10.1530/ERC-12-0231. Print 2013 Feb.
51 Correlation between prostate volume and single nucleotide polymorphisms implicated in the steroid pathway.World J Urol. 2017 Feb;35(2):293-298. doi: 10.1007/s00345-016-1869-4. Epub 2016 Jun 8.
52 Androgen receptor up-regulates insulin-like growth factor binding protein-5 (IGFBP-5) expression in a human prostate cancer xenograft.Endocrinology. 1999 May;140(5):2372-81. doi: 10.1210/endo.140.5.6702.
53 Association of IL10, IL10RA, and IL10RB polymorphisms with benign prostate hyperplasia in Korean population.J Korean Med Sci. 2011 May;26(5):659-64. doi: 10.3346/jkms.2011.26.5.659. Epub 2011 Apr 21.
54 Upregulated Interleukin 21 Receptor Enhances Proliferation and Epithelial-Mesenchymal Transition Process in Benign Prostatic Hyperplasia.Front Endocrinol (Lausanne). 2019 Jan 23;10:4. doi: 10.3389/fendo.2019.00004. eCollection 2019.
55 Do the expressions of epithelial-mesenchymal transition proteins, periostin, integrin-4 and fibronectin correlate with clinico-pathological features and prognosis of metastatic castration-resistant prostate cancer?.Exp Biol Med (Maywood). 2017 Dec;242(18):1795-1801. doi: 10.1177/1535370217728499. Epub 2017 Aug 24.
56 Genetic alterations and changes in expression of histone demethylases in prostate cancer.Prostate. 2010 Jun 1;70(8):889-98. doi: 10.1002/pros.21123.
57 Klotho inhibits androgen/androgen receptorassociated epithelialmesenchymal transition in prostate cancer through inactivation of ERK1/2 signaling.Oncol Rep. 2018 Jul;40(1):217-225. doi: 10.3892/or.2018.6399. Epub 2018 Apr 25.
58 Proteomic analysis of patient tissue reveals PSA protein in the stroma of benign prostatic hyperplasia.Prostate. 2014 Jun;74(8):892-900. doi: 10.1002/pros.22807. Epub 2014 Apr 7.
59 Kallikrein-related peptidase 4 gene (KLK4) in prostate tumors: quantitative expression analysis and evaluation of its clinical significance.Prostate. 2011 Dec;71(16):1780-9. doi: 10.1002/pros.21395. Epub 2011 Apr 25.
60 Quantitative analysis of human kallikrein 5 (KLK5) expression in prostate needle biopsies: an independent cancer biomarker.Clin Chem. 2009 May;55(5):904-13. doi: 10.1373/clinchem.2008.103788. Epub 2009 Mar 19.
61 Potential Prognostic Role for SPOP, DAXX, RARRES1, and LAMP2 as an Autophagy Related Genes in Prostate Cancer.Urol J. 2020 Mar 16;17(2):156-163. doi: 10.22037/uj.v0i0.4935.
62 Loss of tumor suppressor mir-203 mediates overexpression of LIM and SH3 Protein 1 (LASP1) in high-risk prostate cancer thereby increasing cell proliferation and migration.Oncotarget. 2014 Jun 30;5(12):4144-4153. doi: 10.18632/oncotarget.1928.
63 Real-time quantitative RT-PCR assessment of PIM-1 and hK2 mRNA expression in benign prostate hyperplasia and prostate cancer.Med Oncol. 2009;26(3):303-8. doi: 10.1007/s12032-008-9120-9. Epub 2008 Nov 12.
64 Association of LTR gene polymorphisms with prostate volume in benign prostatic hyperplasia in the Korean population.Genet Mol Res. 2015 Dec 29;14(4):18607-15. doi: 10.4238/2015.December.28.9.
65 Lysozyme gene treatment in testosterone induced benign prostate hyperplasia rat model and comparasion of its' effectiveness with botulinum toxin injection.Int Braz J Urol. 2017 Nov-Dec;43(6):1167-1175. doi: 10.1590/S1677-5538.IBJU.2016.0677.
66 MicroRNAs 143 and 145 may be involved in benign prostatic hyperplasia pathogenesis through regulation of target genes and proteins.Int J Biol Markers. 2014 Sep 30;29(3):e246-52. doi: 10.5301/jbm.5000069.
67 The prostate cancer-up-regulated Myc-associated zinc-finger protein (MAZ) modulates proliferation and metastasis through reciprocal regulation of androgen receptor.Med Oncol. 2013;30(2):570. doi: 10.1007/s12032-013-0570-3. Epub 2013 Apr 23.
68 Structural and molecular biology of PSP94: Its significance in prostate pathophysiology.Front Biosci (Landmark Ed). 2018 Jan 1;23(3):535-562. doi: 10.2741/4604.
69 Joint effects of inflammation and androgen metabolism on prostate cancer severity.Int J Cancer. 2008 Sep 15;123(6):1385-9. doi: 10.1002/ijc.23687.
70 TBL1Y: a new gene involved in syndromic hearing loss. Eur J Hum Genet. 2019 Mar;27(3):466-474. doi: 10.1038/s41431-018-0282-4. Epub 2018 Oct 19.
71 Ornithine decarboxylase (ODC) expression pattern in human prostate tissues and ODC transgenic mice.J Histochem Cytochem. 2006 Feb;54(2):223-9. doi: 10.1369/jhc.5A6672.2005. Epub 2005 Oct 18.
72 Prostate--specific G protein couple receptor genes and STAG1/PMEPA1 in peripheral blood from patients with prostatic cancer.Int J Immunopathol Pharmacol. 2006 Oct-Dec;19(4):871-8. doi: 10.1177/039463200601900416.
73 Upregulation of Oxytocin Receptor in the Hyperplastic Prostate.Front Endocrinol (Lausanne). 2018 Aug 3;9:403. doi: 10.3389/fendo.2018.00403. eCollection 2018.
74 Activation of Prejunctional P2x2/3 Heterotrimers by ATP Enhances the Cholinergic Tone in Obstructed Human Urinary Bladders.J Pharmacol Exp Ther. 2020 Jan;372(1):63-72. doi: 10.1124/jpet.119.261610. Epub 2019 Oct 21.
75 The role of prostate specific membrane antigen and pepsinogen C tissue expression as an adjunctive method to prostate cancer diagnosis.J Urol. 2009 Feb;181(2):594-600. doi: 10.1016/j.juro.2008.10.007. Epub 2008 Dec 13.
76 PIM1 kinase as a target in prostate cancer: roles in tumorigenesis, castration resistance, and docetaxel resistance.Curr Cancer Drug Targets. 2014;14(2):105-14. doi: 10.2174/1568009613666131126113854.
77 The over-expression of Pim-2 promote the tumorigenesis of prostatic carcinoma through phosphorylating eIF4B.Prostate. 2013 Sep;73(13):1462-9. doi: 10.1002/pros.22693. Epub 2013 Jun 27.
78 Phospholipase D inhibitors reduce human prostate cancer cell proliferation and colony formation.Br J Cancer. 2018 Jan;118(2):189-199. doi: 10.1038/bjc.2017.391. Epub 2017 Nov 14.
79 Implication of DNA repair genes in prostate tumourigenesis in Indian males.Indian J Med Res. 2012 Oct;136(4):622-32.
80 Prostate stem cell antigen (PSCA) mRNA expression in peripheral blood in patients with benign prostatic hyperplasia and/or prostate cancer.Med Oncol. 2015 Mar;32(3):74. doi: 10.1007/s12032-015-0529-7. Epub 2015 Feb 20.
81 Regulatory network analysis of hypertension and hypotension microarray data from mouse model.Clin Exp Hypertens. 2018;40(7):631-636. doi: 10.1080/10641963.2017.1416120. Epub 2018 Feb 5.
82 Absolute quantitation of DNA methylation of 28 candidate genes in prostate cancer using pyrosequencing.Dis Markers. 2011;30(4):151-61. doi: 10.3233/DMA-2011-0790.
83 Autoantibodies Directed Against the Endothelin A Receptor in Patients With Benign Prostatic Hyperplasia.Prostate. 2017 Apr;77(5):458-465. doi: 10.1002/pros.23284. Epub 2016 Nov 24.
84 Loss of BMP2, Smad8, and Smad4 expression in prostate cancer progression.Prostate. 2004 May 15;59(3):234-42. doi: 10.1002/pros.10361.
85 STEAP1 protein overexpression is an independent marker for biochemical recurrence in prostate carcinoma.Histopathology. 2013 Nov;63(5):678-85. doi: 10.1111/his.12226. Epub 2013 Sep 11.
86 Transforming growth factor-beta 3 is expressed in nondividing basal epithelial cells in normal human prostate and benign prostatic hyperplasia, and is no longer detectable in prostate carcinoma.Prostate. 1997 May 1;31(2):103-9. doi: 10.1002/(sici)1097-0045(19970501)31:2<103::aid-pros5>3.0.co;2-o.
87 Detection of TMPRSS2-ERG fusion gene in benign prostatic hyperplasia.Tumour Biol. 2014 Oct;35(10):9597-602. doi: 10.1007/s13277-014-2250-0. Epub 2014 Jun 25.
88 Expression of a flt-4 (VEGFR3) splicing variant in primary human prostate tumors. VEGF D and flt-4t(Delta773-1081) overexpression is diagnostic for sentinel lymph node metastasis.Lab Invest. 2004 Jun;84(6):785-95. doi: 10.1038/labinvest.3700075.
89 VPAC1 Targeted (64)Cu-TP3805 kit preparation and its evaluation.Nucl Med Biol. 2017 Aug;51:55-61. doi: 10.1016/j.nucmedbio.2017.04.007. Epub 2017 May 3.
90 Induction of human Cdc37 in prostate cancer correlates with the ability of targeted Cdc37 expression to promote prostatic hyperplasia.Oncogene. 2000 Apr 27;19(18):2186-93. doi: 10.1038/sj.onc.1203561.
91 The Differential Expression and Function of the Inflammatory Chemokine Receptor CXCR5 in Benign Prostatic Hyperplasia and Prostate Cancer.Int J Med Sci. 2015 Oct 15;12(11):853-61. doi: 10.7150/ijms.11713. eCollection 2015.
92 Regional variations of insulin-like growth factor I (IGF-I), IGF-II, and receptor type I in benign prostatic hyperplasia tissue and their correlation with intraprostatic androgens.J Clin Endocrinol Metab. 2001 Apr;86(4):1700-6. doi: 10.1210/jcem.86.4.7413.
93 Androgen-stimulated human prostate epithelial growth mediated by stromal-derived fibroblast growth factor-10.Endocr J. 1999 Jun;46(3):405-13. doi: 10.1507/endocrj.46.405.
94 Expression of kallikrein-related peptidase 7 is decreased in prostate cancer.Asian J Androl. 2015 Jan-Feb;17(1):106-10. doi: 10.4103/1008-682X.137613.
95 Overexpressed Rce1 is positively correlated with tumor progression and predicts poor prognosis in prostate cancer.Hum Pathol. 2016 Jan;47(1):109-14. doi: 10.1016/j.humpath.2015.08.021. Epub 2015 Sep 28.
96 Uric acid: a modulator of prostate cells and activin sensitivity.Mol Cell Biochem. 2016 Mar;414(1-2):187-99. doi: 10.1007/s11010-016-2671-8. Epub 2016 Feb 24.
97 Somatostatin receptors in prostate tissues and derived cell cultures, and the in vitro growth inhibitory effect of BIM-23014 analog.Mol Cell Endocrinol. 1995 Sep 22;113(2):195-204. doi: 10.1016/0303-7207(95)03630-p.
98 Expression of the non-gastric H+/K+ ATPase ATP12A in normal and pathological human prostate tissue.Cell Physiol Biochem. 2011;28(6):1287-94. doi: 10.1159/000335860. Epub 2011 Dec 16.
99 TREK-1 is a novel molecular target in prostate cancer.Cancer Res. 2008 Feb 15;68(4):1197-203. doi: 10.1158/0008-5472.CAN-07-5163.
100 VAT-1 is a novel pathogenic factor of progressive benign prostatic hyperplasia.Prostate. 2011 Oct 1;71(14):1579-86. doi: 10.1002/pros.21374. Epub 2011 Mar 10.
101 Heritability and genome-wide association study of benign prostatic hyperplasia (BPH) in the eMERGE network.Sci Rep. 2019 Apr 15;9(1):6077. doi: 10.1038/s41598-019-42427-z.
102 Androgen receptor GGC polymorphism and testosterone levels associated with high risk of prostate cancer and benign prostatic hyperplasia.Mol Biol Rep. 2013 Mar;40(3):2749-56. doi: 10.1007/s11033-012-2293-5. Epub 2012 Nov 27.
103 Expression of enzymes involved in estrogen metabolism in human prostate.J Histochem Cytochem. 2006 Aug;54(8):911-21. doi: 10.1369/jhc.6A6927.2006. Epub 2006 May 1.
104 Lack of association between the UDP-glucuronosyltransferase 1A1 (UGT1A1) gene polymorphism and the risk of benign prostatic hyperplasia in Caucasian men.Mol Biol Rep. 2013 Dec;40(12):6665-9. doi: 10.1007/s11033-013-2781-2. Epub 2013 Sep 21.
105 Genetic variations in UGT2B28, UGT2B17, UGT2B15 genes and the risk of prostate cancer: A case-control study.Gene. 2017 Nov 15;634:47-52. doi: 10.1016/j.gene.2017.08.038. Epub 2017 Sep 4.
106 Tumor-suppressive functions of 15-Lipoxygenase-2 and RB1CC1 in prostate cancer.Cell Cycle. 2014;13(11):1798-810. doi: 10.4161/cc.28757. Epub 2014 Apr 14.
107 5-ARI induces autophagy of prostate epithelial cells through suppressing IGF-1 expression in prostate fibroblasts.Cell Prolif. 2019 May;52(3):e12590. doi: 10.1111/cpr.12590. Epub 2019 Mar 18.
108 The effect of CCL19/CCR7 on the proliferation and migration of cell in prostate cancer.Tumour Biol. 2015 Jan;36(1):329-35. doi: 10.1007/s13277-014-2642-1. Epub 2014 Sep 26.
109 DLEC1, a 3p tumor suppressor, represses NF-B signaling and is methylated in prostate cancer.J Mol Med (Berl). 2015 Jun;93(6):691-701. doi: 10.1007/s00109-015-1255-5. Epub 2015 Feb 5.
110 Mechanism of androgen receptor corepression by CKBP2/CRIF1, a multifunctional transcription factor coregulator expressed in prostate cancer.Mol Cell Endocrinol. 2014 Jan 25;382(1):302-313. doi: 10.1016/j.mce.2013.09.036. Epub 2013 Oct 5.
111 Bortezomib prevents oncogenesis and bone metastasis of prostate cancer by inhibiting WWP1, Smurf1 and Smurf2.Int J Oncol. 2014 Oct;45(4):1469-78. doi: 10.3892/ijo.2014.2545. Epub 2014 Jul 17.
112 Expression of hepatocyte growth factor activator inhibitor-1 (HAI-1) gene in prostate cancer: clinical and biological significance.J BUON. 2014 Jan-Mar;19(1):215-20.
113 BAP18 coactivates androgen receptor action and promotes prostate cancer progression.Nucleic Acids Res. 2016 Sep 30;44(17):8112-28. doi: 10.1093/nar/gkw472. Epub 2016 May 25.
114 Expression of leukemia/lymphoma related factor (LRF/Pokemon) in human benign prostate hyperplasia and prostate cancer.Exp Mol Pathol. 2011 Apr;90(2):226-30. doi: 10.1016/j.yexmp.2011.01.003. Epub 2011 Jan 18.
115 Repression of androgen receptor activity by HEYL, a third member of the Hairy/Enhancer-of-split-related family of Notch effectors.J Biol Chem. 2011 May 20;286(20):17796-808. doi: 10.1074/jbc.M110.198655. Epub 2011 Mar 17.
116 LILRA3 is associated with benign prostatic hyperplasia risk in a Chinese Population.Int J Mol Sci. 2013 Apr 24;14(5):8832-40. doi: 10.3390/ijms14058832.
117 High NRBP1 expression in prostate cancer is linked with poor clinical outcomes and increased cancer cell growth.Prostate. 2012 Nov;72(15):1678-87. doi: 10.1002/pros.22521. Epub 2012 Apr 2.
118 SWAP70, actin-binding protein, function as an oncogene targeting tumor-suppressive miR-145 in prostate cancer.Prostate. 2011 Oct 1;71(14):1559-67. doi: 10.1002/pros.21372. Epub 2011 Feb 25.
119 TM4SF1, a novel primary androgen receptor target gene over-expressed in human prostate cancer and involved in cell migration.Prostate. 2011 Aug 1;71(11):1239-50. doi: 10.1002/pros.21340. Epub 2011 Jan 12.
120 AFAP-110 is overexpressed in prostate cancer and contributes to tumorigenic growth by regulating focal contacts.J Clin Invest. 2007 Oct;117(10):2962-73. doi: 10.1172/JCI30710.
121 Quantitative assessment of AKAP12 promoter methylation in human prostate cancer using methylation-sensitive high-resolution melting: correlation with Gleason score.Urology. 2011 Apr;77(4):1006.e1-7. doi: 10.1016/j.urology.2010.12.010. Epub 2011 Feb 18.
122 Factors affecting the efficacy and safety of phosphodiesterase 5 inhibitor and placebo in treatment for lower urinary tract symptoms: meta-analysis and meta-regression.Int Urol Nephrol. 2018 Jan;50(1):35-47. doi: 10.1007/s11255-017-1743-3. Epub 2017 Nov 11.
123 anti-tumor effect of AlkB homolog 3 knockdown in hormone- independent prostate cancer cells.Curr Cancer Drug Targets. 2012 Sep;12(7):847-56. doi: 10.2174/156800912802429283.
124 Involvement of heparin affin regulatory peptide in human prostate cancer.Prostate. 1999 Feb 1;38(2):126-36. doi: 10.1002/(sici)1097-0045(19990201)38:2<126::aid-pros6>3.0.co;2-c.
125 Effect of preoperative detrusor underactivity on long-term surgical outcomes of photovaporization and holmium laser enucleation in men with benign prostatic hyperplasia: a lesson from 5-year serial follow-up data.BJU Int. 2019 May;123(5A):E34-E42. doi: 10.1111/bju.14661. Epub 2019 Jan 27.
126 A NAV2729-sensitive mechanism promotes adrenergic smooth muscle contraction and growth of stromal cells in the human prostate.J Biol Chem. 2019 Aug 9;294(32):12231-12249. doi: 10.1074/jbc.RA119.007958. Epub 2019 Jun 26.
127 Contribution of ARLTS1 Cys148Arg (T442C) variant with prostate cancer risk and ARLTS1 function in prostate cancer cells.PLoS One. 2011;6(10):e26595. doi: 10.1371/journal.pone.0026595. Epub 2011 Oct 20.
128 Deregulation of ATG9A by impaired AR signaling induces autophagy in prostate stromal fibroblasts and promotes BPH progression.Cell Death Dis. 2018 Apr 1;9(4):431. doi: 10.1038/s41419-018-0415-2.
129 Kangquan Recipe Regulates the Expression of BAMBI Protein via the TGF-/Smad Signaling Pathway to Inhibit Benign Prostatic Hyperplasia in Rats.Evid Based Complement Alternat Med. 2019 May 2;2019:6281819. doi: 10.1155/2019/6281819. eCollection 2019.
130 Genomic analysis of benign prostatic hyperplasia implicates cellular re-landscaping in disease pathogenesis.JCI Insight. 2019 May 16;5(12):e129749. doi: 10.1172/jci.insight.129749.
131 Preferential humoral immune response in prostate cancer to cellular proteins p90 and p62 in a panel of tumor-associated antigens.Prostate. 2005 May 15;63(3):252-8. doi: 10.1002/pros.20181.
132 NF-B and GATA-Binding Factor 6 Repress Transcription of Caveolins in Bladder Smooth Muscle Hypertrophy.Am J Pathol. 2019 Apr;189(4):847-867. doi: 10.1016/j.ajpath.2018.12.013. Epub 2019 Jan 30.
133 Associations of polymorphisms in HPC2/ELAC2 and SRD5A2 genes with benign prostate hyperplasia in Turkish men.Asian Pac J Cancer Prev. 2011;12(3):731-3.
134 Epidermal growth factor receptor mRNA levels in human prostatic tumors and cell lines.J Urol. 1990 Jun;143(6):1272-4. doi: 10.1016/s0022-5347(17)40253-9.
135 Nanoscale flow cytometry to distinguish subpopulations of prostate extracellular vesicles in patient plasma.Prostate. 2019 May;79(6):592-603. doi: 10.1002/pros.23764. Epub 2019 Jan 24.
136 KAI1/CD82 gene expression in benign prostatic hyperplasia and late-stage prostate cancer in Chinese.Asian J Androl. 2000 Sep;2(3):221-4.
137 CDC6 mRNA Expression Is Associated with the Aggressiveness of Prostate Cancer.J Korean Med Sci. 2018 Nov 2;33(47):e303. doi: 10.3346/jkms.2018.33.e303. eCollection 2018 Nov 19.
138 Expression and clinical significance of Centrosomal protein 55 (CEP55) in human urinary bladder transitional cell carcinoma.Immunobiology. 2015 Jan;220(1):103-8. doi: 10.1016/j.imbio.2014.08.014. Epub 2014 Aug 21.
139 CIP2A mediates prostate cancer progression via the c-Myc signaling pathway.Tumour Biol. 2015 Jun;36(6):4777-83. doi: 10.1007/s13277-015-3129-4. Epub 2015 Jan 31.
140 Database-augmented Mass Spectrometry Analysis of Exosomes Identifies Claudin 3 as a Putative Prostate Cancer Biomarker.Mol Cell Proteomics. 2017 Jun;16(6):998-1008. doi: 10.1074/mcp.M117.068577. Epub 2017 Apr 9.
141 Characterization of prostate cancer in needle biopsy by cathepsin B, cell proliferation and DNA ploidy.Anticancer Res. 2010 Mar;30(3):719-25.
142 Expression analysis of delta-catenin and prostate-specific membrane antigen: their potential as diagnostic markers for prostate cancer.Int J Cancer. 2002 Jul 10;100(2):228-37. doi: 10.1002/ijc.10468.
143 Pathological patterns of prostate biopsy in men with fluctuations of prostate cancer gene 3 score: a preliminary report.Anticancer Res. 2015 Apr;35(4):2417-22.
144 Expression and copy number analysis of TRPS1, EIF3S3 and MYC genes in breast and prostate cancer.Br J Cancer. 2004 Mar 8;90(5):1041-6. doi: 10.1038/sj.bjc.6601648.
145 Polymorphisms in the HPC/ELAC-2 and alpha 1-antitrypsin genes that correlate with human diseases in a North Indian population.Mol Biol Rep. 2011 Jun;38(5):3137-44. doi: 10.1007/s11033-010-9984-6. Epub 2010 Feb 2.
146 Conditional deletion of ELL2 induces murine prostate intraepithelial neoplasia.J Endocrinol. 2017 Nov;235(2):123-136. doi: 10.1530/JOE-17-0112.
147 Expression of FGD4 positively correlates with the aggressive phenotype of prostate cancer.BMC Cancer. 2018 Dec 17;18(1):1257. doi: 10.1186/s12885-018-5096-9.
148 FGF17 is an autocrine prostatic epithelial growth factor and is upregulated in benign prostatic hyperplasia.Prostate. 2004 Jun 15;60(1):18-24. doi: 10.1002/pros.20026.
149 Current state of biomarkers for the diagnosis and assessment of treatment efficacy of prostate cancer.Discov Med. 2019 Jun;27(150):235-243.
150 Gene expression of forkhead transcription factors in the normal and diseased human prostate.BJU Int. 2009 Jun;103(11):1574-80. doi: 10.1111/j.1464-410X.2009.08351.x. Epub 2009 Feb 11.
151 Association of ferritin with prostate cancer.J BUON. 2017 May-Jun;22(3):766-770.
152 Androgen receptor isoforms expression in benign prostatic hyperplasia and primary prostate cancer.PLoS One. 2018 Jul 20;13(7):e0200613. doi: 10.1371/journal.pone.0200613. eCollection 2018.
153 External validation of FXYD3 and KRT20 as predictive biomarkers for the presence of micrometastasis in muscle invasive bladder cancer lymph nodes.Actas Urol Esp. 2015 Oct;39(8):473-81. doi: 10.1016/j.acuro.2015.02.002. Epub 2015 Apr 25.
154 Use of multiple biomarkers for a molecular diagnosis of prostate cancer.Int J Cancer. 2005 May 10;114(6):950-6. doi: 10.1002/ijc.20760.
155 GATA-6 and NF-B activate CPI-17 gene transcription and regulate Ca2+ sensitization of smooth muscle contraction.Mol Cell Biol. 2013 Mar;33(5):1085-102. doi: 10.1128/MCB.00626-12. Epub 2012 Dec 28.
156 P53, GHRH, inflammation and cancer.EBioMedicine. 2018 Nov;37:557-562. doi: 10.1016/j.ebiom.2018.10.034. Epub 2018 Oct 19.
157 Heterogeneity of d-glucuronyl C5-epimerase expression and epigenetic regulation in prostate cancer.Cancer Med. 2013 Oct;2(5):654-61. doi: 10.1002/cam4.108. Epub 2013 Aug 5.
158 Detection of glypican-1 (GPC-1) expression in urine cell sediments in prostate cancer.PLoS One. 2018 Apr 19;13(4):e0196017. doi: 10.1371/journal.pone.0196017. eCollection 2018.
159 Rhodamine-marked bombesin: a novel means for prostate cancer fluorescence imaging.Invest New Drugs. 2014 Feb;32(1):37-46. doi: 10.1007/s10637-013-9975-2. Epub 2013 Jun 1.
160 GSTM1, GSTM3 and GSTT1 gene variants and risk of benign prostate hyperplasia in North India.Dis Markers. 2009;26(2):85-91. doi: 10.3233/DMA-2009-0611.
161 Roles of the androgen receptor cofactor p44 in the growth of prostate epithelial cells.J Mol Endocrinol. 2006 Oct;37(2):283-300. doi: 10.1677/jme.1.02062.
162 Identification of reference genes and miRNAs for RT-qPCR in testosterone propionate-induced benign prostatic hyperplasia in rats.Andrologia. 2018 Feb 14. doi: 10.1111/and.12966. Online ahead of print.
163 CK2 abrogates the inhibitory effects of PRH/HHEX on prostate cancer cell migration and invasion and acts through PRH to control cell proliferation.Oncogenesis. 2017 Jan 30;6(1):e293. doi: 10.1038/oncsis.2016.82.
164 hnRNPM, a potential mediator of YY1 in promotingthe epithelial-mesenchymal transition of prostate cancer cells.Prostate. 2019 Aug;79(11):1199-1210. doi: 10.1002/pros.23790.
165 Immunohistochemical analysis of Omi/HtrA2 expression in prostate cancer and benign prostatic hyperplasia.APMIS. 2006 Dec;114(12):893-8. doi: 10.1111/j.1600-0463.2006.apm_271.x.
166 Stromal factors involved in human prostate cancer development, progression and castration resistance.J Cancer Res Clin Oncol. 2017 Feb;143(2):351-359. doi: 10.1007/s00432-016-2284-3. Epub 2016 Oct 27.
167 INSL3 in the benign hyperplastic and neoplastic human prostate gland. Int J Oncol. 2005 Aug;27(2):307-15.
168 Genetic variants in 2q31 and 5p15 are associated with aggressive benign prostatic hyperplasia in a Chinese population.Prostate. 2013 Aug;73(11):1182-90. doi: 10.1002/pros.22666. Epub 2013 Apr 26.
169 HOTAIR genetic variants are associated with prostate cancer and benign prostate hyperplasia in an Iranian population.Gene. 2017 May 20;613:20-24. doi: 10.1016/j.gene.2017.02.031. Epub 2017 Mar 1.
170 mRNA expression analysis of human kallikrein 11 (KLK11) may be useful in the discrimination of benign prostatic hyperplasia from prostate cancer after needle prostate biopsy.Biol Chem. 2006 Jun;387(6):789-93. doi: 10.1515/BC.2006.099.
171 Expression analysis and study of the KLK15 mRNA splice variants in prostate cancer and benign prostatic hyperplasia.Cancer Sci. 2010 Mar;101(3):693-9. doi: 10.1111/j.1349-7006.2009.01450.x. Epub 2009 Nov 27.
172 Expression of two testis-specific genes, SPATA19 and LEMD1, in prostate cancer.Arch Med Res. 2010 Apr;41(3):195-200. doi: 10.1016/j.arcmed.2010.04.003.
173 SFRP1 repression in prostate cancer is triggered by two different epigenetic mechanisms.Gene. 2016 Nov 30;593(2):292-301. doi: 10.1016/j.gene.2016.08.030. Epub 2016 Aug 26.
174 MAGI-2 in prostate cancer: an immunohistochemical study.Hum Pathol. 2016 Jun;52:83-91. doi: 10.1016/j.humpath.2016.01.003. Epub 2016 Feb 4.
175 Epigenetic silencing of MEIS2 in prostate cancer recurrence.Clin Epigenetics. 2019 Oct 22;11(1):147. doi: 10.1186/s13148-019-0742-x.
176 Survivin and NAIP in Human Benign Prostatic Hyperplasia: Protective Role of the Association of Serenoa repens, Lycopene and Selenium from the Randomized Clinical Study.Int J Mol Sci. 2017 Mar 22;18(3):680. doi: 10.3390/ijms18030680.
177 Berberine Improves Benign Prostatic Hyperplasia via Suppression of 5 Alpha Reductase and Extracellular Signal-Regulated Kinase in Vivo and in Vitro.Front Pharmacol. 2018 Jul 16;9:773. doi: 10.3389/fphar.2018.00773. eCollection 2018.
178 NDRG3 is an androgen regulated and prostate enriched gene that promotes in vitro and in vivo prostate cancer cell growth.Int J Cancer. 2009 Feb 1;124(3):521-30. doi: 10.1002/ijc.23961.
179 Nfib Regulates Transcriptional Networks That Control the Development of Prostatic Hyperplasia.Endocrinology. 2016 Mar;157(3):1094-109. doi: 10.1210/en.2015-1312. Epub 2015 Dec 17.
180 NPRL2 enhances autophagy and the resistance to Everolimus in castration-resistant prostate cancer.Prostate. 2019 Jan;79(1):44-53. doi: 10.1002/pros.23709. Epub 2018 Sep 3.
181 PSGR2, a novel G-protein coupled receptor, is overexpressed in human prostate cancer.Int J Cancer. 2006 Mar 15;118(6):1471-80. doi: 10.1002/ijc.21527.
182 Profiling molecular targets of TGF-beta1 in prostate fibroblast-to-myofibroblast transdifferentiation.Mech Ageing Dev. 2005 Jan;126(1):59-69. doi: 10.1016/j.mad.2004.09.023.
183 Aberrant promoter methylation of the PAQR3 gene is associated with prostate cancer.Pathol Res Pract. 2018 Jan;214(1):126-129. doi: 10.1016/j.prp.2017.10.010. Epub 2017 Oct 10.
184 piRNA-DQ722010 contributes to prostate hyperplasia of the male offspring mice after the maternal exposed to microcystin-leucine arginine.Prostate. 2019 May;79(7):798-812. doi: 10.1002/pros.23786. Epub 2019 Mar 22.
185 Combination of phospholipase C knockdown with GANT61 sensitizes castrationresistant prostate cancer cells to enzalutamide by suppressing the androgen receptor signaling pathway.Oncol Rep. 2019 May;41(5):2689-2702. doi: 10.3892/or.2019.7054. Epub 2019 Mar 7.
186 Differential expression of the ccn3 (nov) proto-oncogene in human prostate cell lines and tissues.Mol Pathol. 2001 Aug;54(4):275-80. doi: 10.1136/mp.54.4.275.
187 Aberrant expression of the PRAC gene in prostate cancer.Int J Oncol. 2013 Dec;43(6):1960-6. doi: 10.3892/ijo.2013.2117. Epub 2013 Oct 2.
188 Mitochondrion-associated protein peroxiredoxin 3 promotes benign prostatic hyperplasia through autophagy suppression and pyroptosis activation.Oncotarget. 2017 May 17;8(46):80295-80302. doi: 10.18632/oncotarget.17927. eCollection 2017 Oct 6.
189 Upregulation of SPOCK2 inhibits the invasion and migration of prostate cancer cells by regulating the MT1-MMP/MMP2 pathway.PeerJ. 2019 Jul 12;7:e7163. doi: 10.7717/peerj.7163. eCollection 2019.
190 PACAP and type I PACAP receptors in human prostate cancer tissue.Ann N Y Acad Sci. 2006 Jul;1070:440-9. doi: 10.1196/annals.1317.059.
191 PTOV1, a novel protein overexpressed in prostate cancer containing a new class of protein homology blocks.Oncogene. 2001 Mar 22;20(12):1455-64. doi: 10.1038/sj.onc.1204233.
192 Increased Paxillin expression in prostate cancer is associated with advanced pathological features, lymph node metastases and biochemical recurrence.J Cancer. 2018 Feb 28;9(6):959-967. doi: 10.7150/jca.22787. eCollection 2018.
193 MSR1 variants and the risks of prostate cancer and benign prostatic hyperplasia: a population-based study in China.Carcinogenesis. 2007 Dec;28(12):2530-6. doi: 10.1093/carcin/bgm196. Epub 2007 Sep 3.
194 Involvement of the glutamine RFamide peptide and its cognate receptor GPR103 in prostate cancer.Oncol Rep. 2019 Feb;41(2):1140-1150. doi: 10.3892/or.2018.6893. Epub 2018 Nov 27.
195 Tissue ACE phenotyping in prostate cancer.Oncotarget. 2019 Oct 29;10(59):6349-6361. doi: 10.18632/oncotarget.27276. eCollection 2019 Oct 29.
196 Genetic variants in 5p13.2 and 7q21.1 are associated with treatment for benign prostatic hyperplasia with the -adrenergic receptor antagonist.Aging Male. 2017 Dec;20(4):250-256. doi: 10.1080/13685538.2017.1358261. Epub 2017 Aug 8.
197 Epigenetic down regulation of RASSF10 and its possible clinical implication in prostate carcinoma.Prostate. 2012 Oct 1;72(14):1550-8. doi: 10.1002/pros.22510. Epub 2012 Mar 13.
198 Knockdown of RNF2 induces cell cycle arrest and apoptosis in prostate cancer cells through the upregulation of TXNIP.Oncotarget. 2017 Jan 17;8(3):5323-5338. doi: 10.18632/oncotarget.14142.
199 The prostate cancer immunome: In silico functional analysis of antigenic proteins from microarray profiling with IgG.Proteomics. 2016 Apr;16(8):1204-14. doi: 10.1002/pmic.201500378. Epub 2016 Apr 4.
200 Promoter hyper-methylation of calcium binding proteins S100A6 and S100A2 in human prostate cancer.Prostate. 2005 Dec 1;65(4):322-30. doi: 10.1002/pros.20302.
201 SSeCKS/AKAP12 induces repulsion between human prostate cancer and microvessel endothelial cells through the activation of Semaphorin 3F.Biochem Biophys Res Commun. 2017 Sep 2;490(4):1394-1398. doi: 10.1016/j.bbrc.2017.07.043. Epub 2017 Jul 8.
202 Histone methyltransferase SETDB1 is required for prostate cancer cell proliferation, migration and invasion.Asian J Androl. 2014 Mar-Apr;16(2):319-24. doi: 10.4103/1008-682X.122812.
203 Promoter hypermethylation of SOX11 correlates with adverse clinicopathological features of human prostate cancer.Int J Exp Pathol. 2017 Dec;98(6):341-346. doi: 10.1111/iep.12257. Epub 2018 Jan 8.
204 Cancer/testis antigen SPATA19 is frequently expressed in benign prostatic hyperplasia and prostate cancer.APMIS. 2017 Dec;125(12):1092-1101. doi: 10.1111/apm.12775. Epub 2017 Oct 3.
205 ssDNA-binding protein 2 is frequently hypermethylated and suppresses cell growth in human prostate cancer.Clin Cancer Res. 2008 Jun 15;14(12):3754-60. doi: 10.1158/1078-0432.CCR-07-4763.
206 Epigenetic regulation of MDR1 gene through post-translational histone modifications in prostate cancer.BMC Genomics. 2013 Dec 17;14:898. doi: 10.1186/1471-2164-14-898.
207 TMEM45B is a novel predictive biomarker for prostate cancer progression and metastasis.Neoplasma. 2018 Sep 19;65(5):815-821. doi: 10.4149/neo_2018_170822N551. Epub 2018 Sep 4.
208 The cancer-associated cell migration protein TSPAN1 is under control of androgens and its upregulation increases prostate cancer cell migration.Sci Rep. 2017 Jul 12;7(1):5249. doi: 10.1038/s41598-017-05489-5.
209 ANX7 as a bio-marker in prostate and breast cancer progression.Dis Markers. 2001;17(2):115-20. doi: 10.1155/2001/239602.
210 CDO1 promoter methylation is associated with gene silencing and is a prognostic biomarker for biochemical recurrence-free survival in prostate cancer patients.Epigenetics. 2016 Dec;11(12):871-880. doi: 10.1080/15592294.2016.1241931. Epub 2016 Sep 30.
211 Diagnostic and prognostic value of tissue and circulating levels of Ephrin-A2 in prostate cancer.Tumour Biol. 2016 Apr;37(4):5365-74. doi: 10.1007/s13277-015-4398-7. Epub 2015 Nov 11.
212 Occurrence and localization of uroguanylin in the aging human prostate.Histochem Cell Biol. 2003 Jan;119(1):69-76. doi: 10.1007/s00418-002-0490-3. Epub 2002 Dec 21.
213 Complex-I Alteration and Enhanced Mitochondrial Fusion Are Associated With Prostate Cancer Progression.J Cell Physiol. 2016 Jun;231(6):1364-74. doi: 10.1002/jcp.25240. Epub 2015 Nov 24.
214 Loss of the expression and localization of inhibin alpha-subunit in high grade prostate cancer.J Clin Endocrinol Metab. 1998 Mar;83(3):969-75. doi: 10.1210/jcem.83.3.4640.
215 Nitric oxide synthases in normal and benign hyperplastic human prostate: immunohistochemistry and molecular biology.J Pathol. 1999 Oct;189(2):224-9. doi: 10.1002/(SICI)1096-9896(199910)189:2<224::AID-PATH422>3.0.CO;2-K.
216 Identification of genes differentially expressed in benign prostatic hyperplasia.J Histochem Cytochem. 2001 May;49(5):669-70. doi: 10.1177/002215540104900517.
217 Down's syndrome-associated single minded gene as a novel tumor marker.Anticancer Res. 2002 Nov-Dec;22(6A):3149-57.
218 Detection of differentially expressed genes in prostate cancer by combining suppression subtractive hybridization and cDNA library array.J Pathol. 2001 Jan;193(1):73-9. doi: 10.1002/1096-9896(2000)9999:9999<::AID-PATH751>3.0.CO;2-Y.