General Information of Drug Off-Target (DOT) (ID: OT7BIIZX)

DOT Name Monocarboxylate transporter 7 (SLC16A6)
Synonyms MCT 7; Monocarboxylate transporter 6; MCT 6; Solute carrier family 16 member 6
Gene Name SLC16A6
UniProt ID
MOT7_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF07690
Sequence
MTQNKLKLCSKANVYTEVPDGGWGWAVAVSFFFVEVFTYGIIKTFGVFFNDLMDSFNESN
SRISWIISICVFVLTFSAPLATVLSNRFGHRLVVMLGGLLVSTGMVAASFSQEVSHMYVA
IGIISGLGYCFSFLPTVTILSQYFGKRRSIVTAVASTGECFAVFAFAPAIMALKERIGWR
YSLLFVGLLQLNIVIFGALLRPIFIRGPASPKIVIQENRKEAQYMLENEKTRTSIDSIDS
GVELTTSPKNVPTHTNLELEPKADMQQVLVKTSPRPSEKKAPLLDFSILKEKSFICYALF
GLFATLGFFAPSLYIIPLGISLGIDQDRAAFLLSTMAIAEVFGRIGAGFVLNREPIRKIY
IELICVILLTVSLFAFTFATEFWGLMSCSIFFGFMVGTIGGTHIPLLAEDDVVGIEKMSS
AAGVYIFIQSIAGLAGPPLAGLLVDQSKIYSRAFYSCAAGMALAAVCLALVRPCKMGLCQ
HHHSGETKVVSHRGKTLQDIPEDFLEMDLAKNEHRVHVQMEPV
Function
Monocarboxylate transporter selective for taurine. May associate with BSG/CD147 or EMB/GP70 ancillary proteins to mediate facilitative efflux or influx of taurine across the plasma membrane. The transport is pH- and sodium-independent. Rather low-affinity, is likely effective for taurine transport in tissues where taurine is present at high concentrations.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 3 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Etoposide DMNH3PG Approved Monocarboxylate transporter 7 (SLC16A6) affects the response to substance of Etoposide. [29]
Mitomycin DMH0ZJE Approved Monocarboxylate transporter 7 (SLC16A6) affects the response to substance of Mitomycin. [29]
Mitoxantrone DMM39BF Approved Monocarboxylate transporter 7 (SLC16A6) affects the response to substance of Mitoxantrone. [29]
------------------------------------------------------------------------------------
30 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Monocarboxylate transporter 7 (SLC16A6). [1]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Monocarboxylate transporter 7 (SLC16A6). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Monocarboxylate transporter 7 (SLC16A6). [3]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Monocarboxylate transporter 7 (SLC16A6). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Monocarboxylate transporter 7 (SLC16A6). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Monocarboxylate transporter 7 (SLC16A6). [6]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Monocarboxylate transporter 7 (SLC16A6). [2]
Quercetin DM3NC4M Approved Quercetin increases the expression of Monocarboxylate transporter 7 (SLC16A6). [7]
Progesterone DMUY35B Approved Progesterone decreases the expression of Monocarboxylate transporter 7 (SLC16A6). [8]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Monocarboxylate transporter 7 (SLC16A6). [9]
Hydroquinone DM6AVR4 Approved Hydroquinone decreases the expression of Monocarboxylate transporter 7 (SLC16A6). [10]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of Monocarboxylate transporter 7 (SLC16A6). [11]
Dasatinib DMJV2EK Approved Dasatinib decreases the expression of Monocarboxylate transporter 7 (SLC16A6). [12]
Amphotericin B DMTAJQE Approved Amphotericin B increases the expression of Monocarboxylate transporter 7 (SLC16A6). [13]
Zidovudine DM4KI7O Approved Zidovudine decreases the expression of Monocarboxylate transporter 7 (SLC16A6). [14]
Sulindac DM2QHZU Approved Sulindac increases the expression of Monocarboxylate transporter 7 (SLC16A6). [15]
Ibuprofen DM8VCBE Approved Ibuprofen increases the expression of Monocarboxylate transporter 7 (SLC16A6). [16]
Acetic Acid, Glacial DM4SJ5Y Approved Acetic Acid, Glacial increases the expression of Monocarboxylate transporter 7 (SLC16A6). [17]
Motexafin gadolinium DMEJKRF Approved Motexafin gadolinium increases the expression of Monocarboxylate transporter 7 (SLC16A6). [17]
Liothyronine DM6IR3P Approved Liothyronine increases the expression of Monocarboxylate transporter 7 (SLC16A6). [18]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Monocarboxylate transporter 7 (SLC16A6). [19]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Monocarboxylate transporter 7 (SLC16A6). [20]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Monocarboxylate transporter 7 (SLC16A6). [21]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Monocarboxylate transporter 7 (SLC16A6). [22]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Monocarboxylate transporter 7 (SLC16A6). [23]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Monocarboxylate transporter 7 (SLC16A6). [25]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Monocarboxylate transporter 7 (SLC16A6). [26]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Monocarboxylate transporter 7 (SLC16A6). [27]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Monocarboxylate transporter 7 (SLC16A6). [28]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE decreases the expression of Monocarboxylate transporter 7 (SLC16A6). [7]
------------------------------------------------------------------------------------
⏷ Show the Full List of 30 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Monocarboxylate transporter 7 (SLC16A6). [24]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 Unique transcriptome, pathways, and networks in the human endometrial fibroblast response to progesterone in endometriosis. Biol Reprod. 2011 Apr;84(4):801-15.
9 Pharmacogenomic identification of novel determinants of response to chemotherapy in colon cancer. Cancer Res. 2006 Mar 1;66(5):2765-77.
10 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
11 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
12 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
13 Differential expression of microRNAs and their predicted targets in renal cells exposed to amphotericin B and its complex with copper (II) ions. Toxicol Mech Methods. 2017 Sep;27(7):537-543. doi: 10.1080/15376516.2017.1333554. Epub 2017 Jun 8.
14 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23. doi: 10.1007/s00204-013-1169-3. Epub 2013 Nov 30.
15 Expression profile analysis of colon cancer cells in response to sulindac or aspirin. Biochem Biophys Res Commun. 2002 Mar 29;292(2):498-512.
16 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
17 Motexafin gadolinium and zinc induce oxidative stress responses and apoptosis in B-cell lymphoma lines. Cancer Res. 2005 Dec 15;65(24):11676-88.
18 Similarities and differences between two modes of antagonism of the thyroid hormone receptor. ACS Chem Biol. 2011 Oct 21;6(10):1096-106.
19 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
20 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
21 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
22 Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16669-74. doi: 10.1073/pnas.1108190108. Epub 2011 Sep 26.
23 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
24 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
25 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
26 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
27 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
28 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
29 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.