General Information of Drug Off-Target (DOT) (ID: OTAM94ID)

DOT Name Heme transporter FLVCR2 (FLVCR2)
Synonyms Calcium-chelate transporter; CCT; Feline leukemia virus subgroup C receptor-related protein 2
Gene Name FLVCR2
Related Disease
Fowler syndrome ( )
Hydranencephaly ( )
Vascular disease ( )
UniProt ID
FLVC2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF07690
Sequence
MVNEGPNQEESDDTPVPESALQADPSVSVHPSVSVHPSVSINPSVSVHPSSSAHPSALAQ
PSGLAHPSSSGPEDLSVIKVSRRRWAVVLVFSCYSMCNSFQWIQYGSINNIFMHFYGVSA
FAIDWLSMCYMLTYIPLLLPVAWLLEKFGLRTIALTGSALNCLGAWVKLGSLKPHLFPVT
VVGQLICSVAQVFILGMPSRIASVWFGANEVSTACSVAVFGNQLGIAIGFLVPPVLVPNI
EDRDELAYHISIMFYIIGGVATLLLILVIIVFKEKPKYPPSRAQSLSYALTSPDASYLGS
IARLFKNLNFVLLVITYGLNAGAFYALSTLLNRMVIWHYPGEEVNAGRIGLTIVIAGMLG
AVISGIWLDRSKTYKETTLVVYIMTLVGMVVYTFTLNLGHLWVVFITAGTMGFFMTGYLP
LGFEFAVELTYPESEGISSGLLNISAQVFGIIFTISQGQIIDNYGTKPGNIFLCVFLTLG
AALTAFIKADLRRQKANKETLENKLQEEEEESNTSKVPTAVSEDHL
Function
Putative heme b importer/sensor involved in heme homeostasis in response to the metabolic state of the cell and to diet. May act as a sensor of cytosolic and/or mitochondrial heme levels to regulate mitochondrial respiration processes, ATP synthesis and thermogenesis. At low heme levels, interacts with components of electron transfer chain (ETC) complexes and ATP2A2, leading to ubiquitin-mediated degradation of ATP2A2 and inhibition of thermogenesis. Upon heme binding, dissociates from ETC complexes to allow switching from mitochondrial ATP synthesis to thermogenesis. Alternatively, in coordination with ATP2A2 may mediate calcium transport and signaling in response to heme.
Tissue Specificity
Expressed in non-hematopoietic tissues, with relative abundant expression in brain, placenta, lung, liver and kidney . Also expressed in hematopoietic tissues (fetal liver, spleen, lymph node, thymus, leukocytes and bone marrow) . Found in acidophil cells of the pituitary that secrete growth hormone and prolactin (at protein level) .

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Fowler syndrome DIS5441L Definitive Autosomal recessive [1]
Hydranencephaly DISE02PO Strong Genetic Variation [2]
Vascular disease DISVS67S Strong Genetic Variation [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Heme transporter FLVCR2 (FLVCR2). [4]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Heme transporter FLVCR2 (FLVCR2). [5]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Heme transporter FLVCR2 (FLVCR2). [6]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Heme transporter FLVCR2 (FLVCR2). [7]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Heme transporter FLVCR2 (FLVCR2). [8]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Heme transporter FLVCR2 (FLVCR2). [9]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Heme transporter FLVCR2 (FLVCR2). [10]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Heme transporter FLVCR2 (FLVCR2). [11]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Heme transporter FLVCR2 (FLVCR2). [12]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Heme transporter FLVCR2 (FLVCR2). [13]
Marinol DM70IK5 Approved Marinol decreases the expression of Heme transporter FLVCR2 (FLVCR2). [14]
Cidofovir DMA13GD Approved Cidofovir affects the expression of Heme transporter FLVCR2 (FLVCR2). [10]
Ifosfamide DMCT3I8 Approved Ifosfamide decreases the expression of Heme transporter FLVCR2 (FLVCR2). [10]
Clodronate DM9Y6X7 Approved Clodronate increases the expression of Heme transporter FLVCR2 (FLVCR2). [10]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Heme transporter FLVCR2 (FLVCR2). [16]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Heme transporter FLVCR2 (FLVCR2). [17]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Heme transporter FLVCR2 (FLVCR2). [18]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Heme transporter FLVCR2 (FLVCR2). [19]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Heme transporter FLVCR2 (FLVCR2). [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Heme transporter FLVCR2 (FLVCR2). [15]
------------------------------------------------------------------------------------

References

1 Mutations in FLVCR2 are associated with proliferative vasculopathy and hydranencephaly-hydrocephaly syndrome (Fowler syndrome). Am J Hum Genet. 2010 Mar 12;86(3):471-8. doi: 10.1016/j.ajhg.2010.02.004. Epub 2010 Mar 4.
2 Hydranencephaly in a newborn with a FLVCR2 mutation and prenatal exposure to cocaine.Birth Defects Res A Clin Mol Teratol. 2015 Jan;103(1):45-50. doi: 10.1002/bdra.23288. Epub 2014 Jul 30.
3 High-throughput sequencing of a 4.1Mb linkage interval reveals FLVCR2 deletions and mutations in lethal cerebral vasculopathy.Hum Mutat. 2010 Oct;31(10):1134-41. doi: 10.1002/humu.21329.
4 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
5 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
6 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
7 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
8 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
9 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
10 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
11 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
12 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
13 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
14 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
15 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
16 Loss of TRIM33 causes resistance to BET bromodomain inhibitors through MYC- and TGF-beta-dependent mechanisms. Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):E4558-66.
17 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
18 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
19 Regulation of chromatin assembly and cell transformation by formaldehyde exposure in human cells. Environ Health Perspect. 2017 Sep 21;125(9):097019.
20 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.