General Information of Drug Off-Target (DOT) (ID: OTBSR6DT)

DOT Name Alpha-galactosidase A (GLA)
Synonyms EC 3.2.1.22; Alpha-D-galactosidase A; Alpha-D-galactoside galactohydrolase; Galactosylgalactosylglucosylceramidase GLA; Melibiase; Agalsidase
Gene Name GLA
Related Disease
Fabry disease ( )
UniProt ID
AGAL_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1R46; 1R47; 3GXN; 3GXP; 3GXT; 3HG2; 3HG3; 3HG4; 3HG5; 3LX9; 3LXA; 3LXB; 3LXC; 3S5Y; 3S5Z; 3TV8; 4NXS; 6IBK; 6IBM; 6IBR; 6IBT
EC Number
3.2.1.22
Pfam ID
PF16499 ; PF17450
Sequence
MQLRNPELHLGCALALRFLALVSWDIPGARALDNGLARTPTMGWLHWERFMCNLDCQEEP
DSCISEKLFMEMAELMVSEGWKDAGYEYLCIDDCWMAPQRDSEGRLQADPQRFPHGIRQL
ANYVHSKGLKLGIYADVGNKTCAGFPGSFGYYDIDAQTFADWGVDLLKFDGCYCDSLENL
ADGYKHMSLALNRTGRSIVYSCEWPLYMWPFQKPNYTEIRQYCNHWRNFADIDDSWKSIK
SILDWTSFNQERIVDVAGPGGWNDPDMLVIGNFGLSWNQQVTQMALWAIMAAPLFMSNDL
RHISPQAKALLQDKDVIAINQDPLGKQGYQLRQGDNFEVWERPLSGLAWAVAMINRQEIG
GPRSYTIAVASLGKGVACNPACFITQLLPVKRKLGFYEWTSRLRSHINPTGTVLLQLENT
MQMSLKDLL
Function Catalyzes the hydrolysis of glycosphingolipids and participates in their degradation in the lysosome.
KEGG Pathway
Galactose metabolism (hsa00052 )
Glycerolipid metabolism (hsa00561 )
Sphingolipid metabolism (hsa00600 )
Glycosphingolipid biosynthesis - globo and isoglobo series (hsa00603 )
Metabolic pathways (hsa01100 )
Lysosome (hsa04142 )
Reactome Pathway
Glycosphingolipid catabolism (R-HSA-9840310 )
Neutrophil degranulation (R-HSA-6798695 )
BioCyc Pathway
MetaCyc:HS02389-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Fabry disease DISUUQJF Definitive X-linked [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Fluorouracil DMUM7HZ Approved Alpha-galactosidase A (GLA) affects the response to substance of Fluorouracil. [25]
------------------------------------------------------------------------------------
25 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Alpha-galactosidase A (GLA). [2]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Alpha-galactosidase A (GLA). [3]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Alpha-galactosidase A (GLA). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Alpha-galactosidase A (GLA). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Alpha-galactosidase A (GLA). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Alpha-galactosidase A (GLA). [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Alpha-galactosidase A (GLA). [8]
Quercetin DM3NC4M Approved Quercetin increases the expression of Alpha-galactosidase A (GLA). [9]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Alpha-galactosidase A (GLA). [10]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Alpha-galactosidase A (GLA). [11]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Alpha-galactosidase A (GLA). [11]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Alpha-galactosidase A (GLA). [12]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Alpha-galactosidase A (GLA). [13]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Alpha-galactosidase A (GLA). [14]
Bortezomib DMNO38U Approved Bortezomib increases the expression of Alpha-galactosidase A (GLA). [15]
Piroxicam DMTK234 Approved Piroxicam decreases the expression of Alpha-galactosidase A (GLA). [16]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Alpha-galactosidase A (GLA). [17]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Alpha-galactosidase A (GLA). [18]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Alpha-galactosidase A (GLA). [19]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Alpha-galactosidase A (GLA). [20]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Alpha-galactosidase A (GLA). [21]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Alpha-galactosidase A (GLA). [22]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Alpha-galactosidase A (GLA). [23]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Alpha-galactosidase A (GLA). [24]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of Alpha-galactosidase A (GLA). [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 25 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
3 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
4 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
5 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
10 Classification of heavy-metal toxicity by human DNA microarray analysis. Environ Sci Technol. 2007 May 15;41(10):3769-74.
11 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
12 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
13 Zoledronate dysregulates fatty acid metabolism in renal tubular epithelial cells to induce nephrotoxicity. Arch Toxicol. 2018 Jan;92(1):469-485.
14 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
15 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
16 Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS One. 2011;6(8):e23569.
17 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
18 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
19 Chemical stresses fail to mimic the unfolded protein response resulting from luminal load with unfolded polypeptides. J Biol Chem. 2018 Apr 13;293(15):5600-5612.
20 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
21 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
22 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
23 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
24 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
25 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.