General Information of Drug Off-Target (DOT) (ID: OTCPI0E8)

DOT Name Arginase-2, mitochondrial (ARG2)
Synonyms EC 3.5.3.1; Arginase II; Kidney-type arginase; Non-hepatic arginase; Type II arginase
Gene Name ARG2
UniProt ID
ARGI2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1PQ3; 4HZE; 4I06; 4IE2; 4IE3; 4IXU; 4IXV; 6Q37; 6Q39; 6SS2; 6SS4; 6SS6
EC Number
3.5.3.1
Pfam ID
PF00491
Sequence
MSLRGSLSRLLQTRVHSILKKSVHSVAVIGAPFSQGQKRKGVEHGPAAIREAGLMKRLSS
LGCHLKDFGDLSFTPVPKDDLYNNLIVNPRSVGLANQELAEVVSRAVSDGYSCVTLGGDH
SLAIGTISGHARHCPDLCVVWVDAHADINTPLTTSSGNLHGQPVSFLLRELQDKVPQLPG
FSWIKPCISSASIVYIGLRDVDPPEHFILKNYDIQYFSMRDIDRLGIQKVMERTFDLLIG
KRQRPIHLSFDIDAFDPTLAPATGTPVVGGLTYREGMYIAEEIHNTGLLSALDLVEVNPQ
LATSEEEAKTTANLAVDVIASSFGQTREGGHIVYDQLPTPSSPDESENQARVRI
Function
May play a role in the regulation of extra-urea cycle arginine metabolism and also in down-regulation of nitric oxide synthesis. Extrahepatic arginase functions to regulate L-arginine bioavailability to nitric oxid synthase (NOS). Arginine metabolism is a critical regulator of innate and adaptive immune responses. Seems to be involved in negative regulation of the survival capacity of activated CD4(+) and CD8(+) T cells. May suppress inflammation-related signaling in asthmatic airway epithelium. May contribute to the immune evasion of H.pylori by restricting M1 macrophage activation and polyamine metabolism. In fetal dendritic cells may play a role in promoting immune suppression and T cell TNF-alpha production during gestation. Regulates RPS6KB1 signaling, which promotes endothelial cell senescence and inflammation and implicates NOS3/eNOS dysfunction. Can inhibit endothelial autophagy independently of its enzymatic activity implicating mTORC2 signaling. Involved in vascular smooth muscle cell senescence and apoptosis independently of its enzymatic activity. Since NOS is found in the penile corpus cavernosum smooth muscle, the clitoral corpus cavernosum and the vagina, arginase-2 plays a role in both male and female sexual arousal.
Tissue Specificity
Expressed most strongly in kidney and prostate, much less strongly in the brain, skeletal muscle, placenta, lung, mammary gland, macrophage, uterus, testis and gut, but apparently not in the liver, heart and pancreas. Expressed in activated T cells .
KEGG Pathway
Arginine biosynthesis (hsa00220 )
Arginine and proline metabolism (hsa00330 )
Metabolic pathways (hsa01100 )
Biosynthesis of amino acids (hsa01230 )
Efferocytosis (hsa04148 )
Amoebiasis (hsa05146 )
Reactome Pathway
Urea cycle (R-HSA-70635 )
BioCyc Pathway
MetaCyc:HS01388-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Biotransformations of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Urea DMUK75B Approved Arginase-2, mitochondrial (ARG2) increases the chemical synthesis of Urea. [31]
------------------------------------------------------------------------------------
33 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Arginase-2, mitochondrial (ARG2). [1]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Arginase-2, mitochondrial (ARG2). [2]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Arginase-2, mitochondrial (ARG2). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Arginase-2, mitochondrial (ARG2). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Arginase-2, mitochondrial (ARG2). [5]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Arginase-2, mitochondrial (ARG2). [6]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Arginase-2, mitochondrial (ARG2). [7]
Quercetin DM3NC4M Approved Quercetin increases the expression of Arginase-2, mitochondrial (ARG2). [8]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Arginase-2, mitochondrial (ARG2). [9]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Arginase-2, mitochondrial (ARG2). [10]
Selenium DM25CGV Approved Selenium decreases the expression of Arginase-2, mitochondrial (ARG2). [11]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Arginase-2, mitochondrial (ARG2). [12]
Menadione DMSJDTY Approved Menadione affects the expression of Arginase-2, mitochondrial (ARG2). [9]
Cannabidiol DM0659E Approved Cannabidiol increases the expression of Arginase-2, mitochondrial (ARG2). [13]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Arginase-2, mitochondrial (ARG2). [14]
Hydroquinone DM6AVR4 Approved Hydroquinone increases the expression of Arginase-2, mitochondrial (ARG2). [15]
Cytarabine DMZD5QR Approved Cytarabine decreases the expression of Arginase-2, mitochondrial (ARG2). [16]
Etoposide DMNH3PG Approved Etoposide decreases the expression of Arginase-2, mitochondrial (ARG2). [17]
Amphotericin B DMTAJQE Approved Amphotericin B decreases the expression of Arginase-2, mitochondrial (ARG2). [18]
Bicalutamide DMZMSPF Approved Bicalutamide increases the expression of Arginase-2, mitochondrial (ARG2). [19]
Isoflavone DM7U58J Phase 4 Isoflavone decreases the expression of Arginase-2, mitochondrial (ARG2). [20]
DNCB DMDTVYC Phase 2 DNCB increases the expression of Arginase-2, mitochondrial (ARG2). [21]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Arginase-2, mitochondrial (ARG2). [8]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Arginase-2, mitochondrial (ARG2). [22]
Torcetrapib DMDHYM7 Discontinued in Phase 2 Torcetrapib increases the expression of Arginase-2, mitochondrial (ARG2). [23]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Arginase-2, mitochondrial (ARG2). [24]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Arginase-2, mitochondrial (ARG2). [25]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Arginase-2, mitochondrial (ARG2). [26]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Arginase-2, mitochondrial (ARG2). [27]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Arginase-2, mitochondrial (ARG2). [28]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Arginase-2, mitochondrial (ARG2). [29]
[3H]methyltrienolone DMTSGOW Investigative [3H]methyltrienolone increases the expression of Arginase-2, mitochondrial (ARG2). [19]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE increases the expression of Arginase-2, mitochondrial (ARG2). [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 33 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
S-(2-boronoethyl)-L-cysteine DMMZQB5 Investigative S-(2-boronoethyl)-L-cysteine affects the binding of Arginase-2, mitochondrial (ARG2). [30]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Inter-laboratory comparison of human renal proximal tubule (HK-2) transcriptome alterations due to Cyclosporine A exposure and medium exhaustion. Toxicol In Vitro. 2009 Apr;23(3):486-99.
3 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
4 Functional cardiotoxicity assessment of cosmetic compounds using human-induced pluripotent stem cell-derived cardiomyocytes. Arch Toxicol. 2018 Jan;92(1):371-381.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
7 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
8 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
9 Time series analysis of oxidative stress response patterns in HepG2: a toxicogenomics approach. Toxicology. 2013 Apr 5;306:24-34.
10 Methotrexate modulates folate phenotype and inflammatory profile in EA.hy 926 cells. Eur J Pharmacol. 2014 Jun 5;732:60-7.
11 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
12 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
13 Cannabidiol enhances cytotoxicity of anti-cancer drugs in human head and neck squamous cell carcinoma. Sci Rep. 2020 Nov 26;10(1):20622. doi: 10.1038/s41598-020-77674-y.
14 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
15 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
16 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
17 Cell death mechanisms of the anti-cancer drug etoposide on human cardiomyocytes isolated from pluripotent stem cells. Arch Toxicol. 2018 Apr;92(4):1507-1524.
18 Differential expression of microRNAs and their predicted targets in renal cells exposed to amphotericin B and its complex with copper (II) ions. Toxicol Mech Methods. 2017 Sep;27(7):537-543. doi: 10.1080/15376516.2017.1333554. Epub 2017 Jun 8.
19 Androgen-regulated expression of arginase 1, arginase 2 and interleukin-8 in human prostate cancer. PLoS One. 2010 Aug 11;5(8):e12107.
20 Soy isoflavones exert differential effects on androgen responsive genes in LNCaP human prostate cancer cells. J Nutr. 2007 Apr;137(4):964-72.
21 MIP-1beta, a novel biomarker for in vitro sensitization test using human monocytic cell line. Toxicol In Vitro. 2006 Aug;20(5):736-42.
22 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
23 Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol. 2012 Dec 10;6:152.
24 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
25 Bisphenol A and bisphenol S induce distinct transcriptional profiles in differentiating human primary preadipocytes. PLoS One. 2016 Sep 29;11(9):e0163318.
26 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
27 Cystathionine metabolic enzymes play a role in the inflammation resolution of human keratinocytes in response to sub-cytotoxic formaldehyde exposure. Toxicol Appl Pharmacol. 2016 Nov 1;310:185-194.
28 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
29 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
30 Binding of ,-disubstituted amino acids to arginase suggests new avenues for inhibitor design. J Med Chem. 2011 Aug 11;54(15):5432-43. doi: 10.1021/jm200443b. Epub 2011 Jul 18.
31 Cells for bioartificial liver devices: the human hepatoma-derived cell line C3A produces urea but does not detoxify ammonia. Biotechnol Bioeng. 2008 Feb 15;99(3):644-51. doi: 10.1002/bit.21599.