General Information of Drug Off-Target (DOT) (ID: OTDIXEXY)

DOT Name Monocarboxylate transporter 4 (SLC16A3)
Synonyms MCT 4; Solute carrier family 16 member 3
Gene Name SLC16A3
UniProt ID
MOT4_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF07690
Sequence
MGGAVVDEGPTGVKAPDGGWGWAVLFGCFVITGFSYAFPKAVSVFFKELIQEFGIGYSDT
AWISSILLAMLYGTGPLCSVCVNRFGCRPVMLVGGLFASLGMVAASFCRSIIQVYLTTGV
ITGLGLALNFQPSLIMLNRYFSKRRPMANGLAAAGSPVFLCALSPLGQLLQDRYGWRGGF
LILGGLLLNCCVCAALMRPLVVTAQPGSGPPRPSRRLLDLSVFRDRGFVLYAVAASVMVL
GLFVPPVFVVSYAKDLGVPDTKAAFLLTILGFIDIFARPAAGFVAGLGKVRPYSVYLFSF
SMFFNGLADLAGSTAGDYGGLVVFCIFFGISYGMVGALQFEVLMAIVGTHKFSSAIGLVL
LMEAVAVLVGPPSGGKLLDATHVYMYVFILAGAEVLTSSLILLLGNFFCIRKKPKEPQPE
VAAAEEEKLHKPPADSGVDLREVEHFLKAEPEKNGEVVHTPETSV
Function Proton-dependent transporter of monocarboxylates such as L-lactate and pyruvate. Plays a predominant role in L-lactate efflux from highly glycolytic cells.
Tissue Specificity Highly expressed in skeletal muscle.
KEGG Pathway
Central carbon metabolism in cancer (hsa05230 )
Reactome Pathway
Proton-coupled monocarboxylate transport (R-HSA-433692 )
Pyruvate metabolism (R-HSA-70268 )
Basigin interactions (R-HSA-210991 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Monocarboxylate transporter 4 (SLC16A3). [1]
Arsenic DMTL2Y1 Approved Arsenic increases the ubiquitination of Monocarboxylate transporter 4 (SLC16A3). [10]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Monocarboxylate transporter 4 (SLC16A3). [20]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of Monocarboxylate transporter 4 (SLC16A3). [22]
------------------------------------------------------------------------------------
24 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Monocarboxylate transporter 4 (SLC16A3). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Monocarboxylate transporter 4 (SLC16A3). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Monocarboxylate transporter 4 (SLC16A3). [4]
Doxorubicin DMVP5YE Approved Doxorubicin affects the expression of Monocarboxylate transporter 4 (SLC16A3). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Monocarboxylate transporter 4 (SLC16A3). [6]
Cisplatin DMRHGI9 Approved Cisplatin affects the expression of Monocarboxylate transporter 4 (SLC16A3). [7]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Monocarboxylate transporter 4 (SLC16A3). [8]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Monocarboxylate transporter 4 (SLC16A3). [9]
Quercetin DM3NC4M Approved Quercetin increases the expression of Monocarboxylate transporter 4 (SLC16A3). [8]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Monocarboxylate transporter 4 (SLC16A3). [11]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Monocarboxylate transporter 4 (SLC16A3). [12]
Decitabine DMQL8XJ Approved Decitabine increases the expression of Monocarboxylate transporter 4 (SLC16A3). [13]
Marinol DM70IK5 Approved Marinol decreases the expression of Monocarboxylate transporter 4 (SLC16A3). [14]
Menadione DMSJDTY Approved Menadione affects the expression of Monocarboxylate transporter 4 (SLC16A3). [12]
Cytarabine DMZD5QR Approved Cytarabine decreases the expression of Monocarboxylate transporter 4 (SLC16A3). [15]
Zidovudine DM4KI7O Approved Zidovudine decreases the expression of Monocarboxylate transporter 4 (SLC16A3). [16]
Liothyronine DM6IR3P Approved Liothyronine increases the expression of Monocarboxylate transporter 4 (SLC16A3). [17]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Monocarboxylate transporter 4 (SLC16A3). [18]
Tamibarotene DM3G74J Phase 3 Tamibarotene increases the expression of Monocarboxylate transporter 4 (SLC16A3). [3]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Monocarboxylate transporter 4 (SLC16A3). [19]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Monocarboxylate transporter 4 (SLC16A3). [19]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Monocarboxylate transporter 4 (SLC16A3). [21]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Monocarboxylate transporter 4 (SLC16A3). [23]
Manganese DMKT129 Investigative Manganese increases the expression of Monocarboxylate transporter 4 (SLC16A3). [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 24 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
4 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
8 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
9 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
10 Quantitative Assessment of Arsenite-Induced Perturbation of Ubiquitinated Proteome. Chem Res Toxicol. 2022 Sep 19;35(9):1589-1597. doi: 10.1021/acs.chemrestox.2c00197. Epub 2022 Aug 22.
11 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
12 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
13 The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia. 2009 Jun;23(6):1019-28.
14 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
15 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
16 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23. doi: 10.1007/s00204-013-1169-3. Epub 2013 Nov 30.
17 Thyroid hormone responsive genes in cultured human fibroblasts. J Clin Endocrinol Metab. 2005 Feb;90(2):936-43.
18 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
19 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
20 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
21 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
22 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
23 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
24 Gene expression profiling of human primary astrocytes exposed to manganese chloride indicates selective effects on several functions of the cells. Neurotoxicology. 2007 May;28(3):478-89.