General Information of Drug Off-Target (DOT) (ID: OTFP7AA8)

DOT Name ATP-dependent 6-phosphofructokinase, platelet type (PFKP)
Synonyms ATP-PFK; PFK-P; EC 2.7.1.11; 6-phosphofructokinase type C; Phosphofructo-1-kinase isozyme C; PFK-C; Phosphohexokinase
Gene Name PFKP
Related Disease
Adenocarcinoma ( )
Breast cancer ( )
Breast carcinoma ( )
Intrahepatic cholangiocarcinoma ( )
Neoplasm ( )
Renal tubular acidosis ( )
Her2-receptor negative breast cancer ( )
HER2/NEU overexpressing breast cancer ( )
Pancreatic cancer ( )
Advanced cancer ( )
UniProt ID
PFKAP_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4RH3; 4U1R; 4WL0; 4XYJ; 4XYK; 4XZ2; 7TFF
EC Number
2.7.1.11
Pfam ID
PF00365
Sequence
MDADDSRAPKGSLRKFLEHLSGAGKAIGVLTSGGDAQGMNAAVRAVVRMGIYVGAKVYFI
YEGYQGMVDGGSNIAEADWESVSSILQVGGTIIGSARCQAFRTREGRLKAACNLLQRGIT
NLCVIGGDGSLTGANLFRKEWSGLLEELARNGQIDKEAVQKYAYLNVVGMVGSIDNDFCG
TDMTIGTDSALHRIIEVVDAIMTTAQSHQRTFVLEVMGRHCGYLALVSALACGADWVFLP
ESPPEEGWEEQMCVKLSENRARKKRLNIIIVAEGAIDTQNKPITSEKIKELVVTQLGYDT
RVTILGHVQRGGTPSAFDRILASRMGVEAVIALLEATPDTPACVVSLNGNHAVRLPLMEC
VQMTQDVQKAMDERRFQDAVRLRGRSFAGNLNTYKRLAIKLPDDQIPKTNCNVAVINVGA
PAAGMNAAVRSAVRVGIADGHRMLAIYDGFDGFAKGQIKEIGWTDVGGWTGQGGSILGTK
RVLPGKYLEEIATQMRTHSINALLIIGGFEAYLGLLELSAAREKHEEFCVPMVMVPATVS
NNVPGSDFSIGADTALNTITDTCDRIKQSASGTKRRVFIIETMGGYCGYLANMGGLAAGA
DAAYIFEEPFDIRDLQSNVEHLTEKMKTTIQRGLVLRNESCSENYTTDFIYQLYSEEGKG
VFDCRKNVLGHMQQGGAPSPFDRNFGTKISARAMEWITAKLKEARGRGKKFTTDDSICVL
GISKRNVIFQPVAELKKQTDFEHRIPKEQWWLKLRPLMKILAKYKASYDVSDSGQLEHVQ
PWSV
Function Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis.
KEGG Pathway
Glycolysis / Gluconeogenesis (hsa00010 )
Pentose phosphate pathway (hsa00030 )
Fructose and mannose metabolism (hsa00051 )
Galactose metabolism (hsa00052 )
Metabolic pathways (hsa01100 )
Carbon metabolism (hsa01200 )
Biosynthesis of amino acids (hsa01230 )
R. degradation (hsa03018 )
HIF-1 sig.ling pathway (hsa04066 )
AMPK sig.ling pathway (hsa04152 )
Thyroid hormone sig.ling pathway (hsa04919 )
Glucagon sig.ling pathway (hsa04922 )
Central carbon metabolism in cancer (hsa05230 )
Reactome Pathway
Glycolysis (R-HSA-70171 )
BioCyc Pathway
MetaCyc:HS00894-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

10 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Adenocarcinoma DIS3IHTY Strong Biomarker [1]
Breast cancer DIS7DPX1 Strong Altered Expression [2]
Breast carcinoma DIS2UE88 Strong Altered Expression [2]
Intrahepatic cholangiocarcinoma DIS6GOC8 Strong Altered Expression [3]
Neoplasm DISZKGEW Strong Altered Expression [4]
Renal tubular acidosis DISE1NDR Strong Genetic Variation [5]
Her2-receptor negative breast cancer DISS605N moderate Biomarker [6]
HER2/NEU overexpressing breast cancer DISYKID5 moderate Biomarker [6]
Pancreatic cancer DISJC981 moderate Biomarker [7]
Advanced cancer DISAT1Z9 Limited Biomarker [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Cisplatin DMRHGI9 Approved ATP-dependent 6-phosphofructokinase, platelet type (PFKP) affects the response to substance of Cisplatin. [33]
Josamycin DMKJ8LB Approved ATP-dependent 6-phosphofructokinase, platelet type (PFKP) decreases the response to substance of Josamycin. [34]
------------------------------------------------------------------------------------
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [9]
Fulvestrant DM0YZC6 Approved Fulvestrant increases the methylation of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [18]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [24]
------------------------------------------------------------------------------------
24 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [10]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [11]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [12]
Estradiol DMUNTE3 Approved Estradiol increases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [13]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [14]
Quercetin DM3NC4M Approved Quercetin increases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [15]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [16]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [17]
Panobinostat DM58WKG Approved Panobinostat increases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [17]
Cytarabine DMZD5QR Approved Cytarabine decreases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [19]
Liothyronine DM6IR3P Approved Liothyronine increases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [20]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [17]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [21]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [10]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [22]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [23]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [25]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [26]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [27]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [28]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [29]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [30]
Deguelin DMXT7WG Investigative Deguelin increases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [31]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A increases the expression of ATP-dependent 6-phosphofructokinase, platelet type (PFKP). [32]
------------------------------------------------------------------------------------
⏷ Show the Full List of 24 Drug(s)

References

1 Genetic polymorphisms in glycolytic pathway are associated with the prognosis of patients with early stage non-small cell lung cancer.Sci Rep. 2016 Oct 21;6:35603. doi: 10.1038/srep35603.
2 Differential expression of phosphofructokinase-1 isoforms correlates with the glycolytic efficiency of breast cancer cells.Mol Genet Metab. 2010 Aug;100(4):372-8. doi: 10.1016/j.ymgme.2010.04.006. Epub 2010 Apr 18.
3 Mutant IDH1 confers resistance to energy stress in normal biliary cells through PFKP-induced aerobic glycolysis and AMPK activation.Sci Rep. 2019 Dec 11;9(1):18859. doi: 10.1038/s41598-019-55211-w.
4 Silencing PFKP inhibits starvation-induced autophagy, glycolysis, and epithelial mesenchymal transition in oral squamous cell carcinoma.Exp Cell Res. 2018 Sep 1;370(1):46-57. doi: 10.1016/j.yexcr.2018.06.007. Epub 2018 Jun 15.
5 Human H+ATPase a4 subunit mutations causing renal tubular acidosis reveal a role for interaction with phosphofructokinase-1.Am J Physiol Renal Physiol. 2008 Oct;295(4):F950-8. doi: 10.1152/ajprenal.90258.2008. Epub 2008 Jul 16.
6 Whole genome DNA methylation signature of HER2-positive breast cancer.Epigenetics. 2014 Aug;9(8):1149-62. doi: 10.4161/epi.29632. Epub 2014 Jul 8.
7 MiR-135 suppresses glycolysis and promotes pancreatic cancer cell adaptation to metabolic stress by targeting phosphofructokinase-1.Nat Commun. 2019 Feb 18;10(1):809. doi: 10.1038/s41467-019-08759-0.
8 PFKP Signaling at a Glance: An Emerging Mediator of Cancer Cell Metabolism.Adv Exp Med Biol. 2019;1134:243-258. doi: 10.1007/978-3-030-12668-1_13.
9 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
10 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
11 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
12 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
13 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
14 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
15 Hypoxia-inducible factor-1 (HIF-1) pathway activation by quercetin in human lens epithelial cells. Exp Eye Res. 2009 Dec;89(6):995-1002. doi: 10.1016/j.exer.2009.08.011. Epub 2009 Sep 1.
16 Proteomics-based identification of differentially abundant proteins from human keratinocytes exposed to arsenic trioxide. J Proteomics Bioinform. 2014 Jul;7(7):166-178.
17 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
18 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
19 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
20 Thyroid hormone responsive genes in cultured human fibroblasts. J Clin Endocrinol Metab. 2005 Feb;90(2):936-43.
21 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
22 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
23 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
24 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
25 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
26 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
27 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
28 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
29 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
30 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
31 Mapping the cellular response to electron transport chain inhibitors reveals selective signaling networks triggered by mitochondrial perturbation. Arch Toxicol. 2022 Jan;96(1):259-285. doi: 10.1007/s00204-021-03160-7. Epub 2021 Oct 13.
32 Ochratoxin A induces reprogramming of glucose metabolism by switching energy metabolism from oxidative phosphorylation to glycolysis in human gastric epithelium GES-1 cells in vitro. Toxicol Lett. 2020 Oct 15;333:232-241. doi: 10.1016/j.toxlet.2020.08.008. Epub 2020 Aug 22.
33 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.
34 A genome-wide analysis of targets of macrolide antibiotics in mammalian cells. J Biol Chem. 2020 Feb 14;295(7):2057-2067. doi: 10.1074/jbc.RA119.010770. Epub 2020 Jan 8.