General Information of Disease (ID: DIS6GOC8)

Disease Name Intrahepatic cholangiocarcinoma
Synonyms
IHCH; peripheral cholangiocarcinoma; intrahepatic cholangiocarcinoma (bile duct cancer); intrahepatic cholangiocarcinoma; intrahepatic carcinoma of the bile duct; intrahepatic carcinoma of bile duct; intrahepatic bile duct carcinoma; intrahepatic bile duct cancer (cholangiocarcinoma); intrahepatic Cholangiocellular carcinoma; cholangiocarcinoma, intrahepatic, malignant; ICC
Disease Class 2C12: Liver cancer
Definition
A carcinoma that arises from the intrahepatic bile duct epithelium in any site of the intrahepatic biliary tree. Grossly, the malignant lesions are solid, nodular, and grayish. Morphologically, the vast majority of cases are adenocarcinomas. Signs and symptoms include malaise, weight loss, right upper quadrant abdominal pain, and night sweats. Early detection is difficult and the prognosis is generally poor.
Disease Hierarchy
DIS7TSHL: Intrahepatic bile duct cancer
DIS71F6X: Cholangiocarcinoma
DIS6GOC8: Intrahepatic cholangiocarcinoma
ICD Code
ICD-11
ICD-11: 2C12.10
ICD-10
ICD-10: C22.1
ICD-9
ICD-9: 155.1, 156.1
Expand ICD-11
'2C12.10
Expand ICD-10
'C22.1
Expand ICD-9
155.1,156.1
Disease Identifiers
MONDO ID
MONDO_0003210
MESH ID
D018281
UMLS CUI
C0345905
MedGen ID
87521
SNOMED CT ID
109842005

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 2 Approved Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Futibatinib DMWM4D0 Approved NA [1]
Melphalan DMOLNHF Approved Small molecular drug [2]
------------------------------------------------------------------------------------
This Disease is Treated as An Indication in 2 Clinical Trial Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
ARQ-087 DM02BVQ Phase 3 NA [2]
MUC-1 CART cell immunotherapy DMFUDHM Phase 1/2 CAR T Cell Therapy [3]
------------------------------------------------------------------------------------

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 56 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
MSLN TT4RXME Limited Biomarker [4]
NOS2 TTF10I9 Limited Biomarker [5]
PRKACA TT5U49F Limited Biomarker [6]
SLC5A5 TTW7HI9 Limited Biomarker [7]
ANO1 TTOJI4S moderate Biomarker [8]
CEACAM3 TTPX7I5 moderate Biomarker [9]
CPS1 TT42M75 moderate Altered Expression [10]
GLUL TTURQ2G moderate Biomarker [11]
GPC3 TTJTSX4 moderate Altered Expression [12]
HSPA9 TTMTPG3 moderate Altered Expression [13]
L1CAM TTC9D3K moderate Biomarker [14]
NUAK1 TT65FL0 moderate Altered Expression [15]
PDXP TT9UYG4 moderate Biomarker [16]
PMEL TT8MK59 moderate Biomarker [17]
PSMD10 TT2H4LN moderate Altered Expression [18]
PTK7 TTXH2ZN moderate Altered Expression [19]
ROBO1 TTND1YP moderate Genetic Variation [20]
TFF1 TTNOJIZ moderate Genetic Variation [21]
VEGFC TT0QUFV moderate Altered Expression [22]
AFP TTCFEA1 Strong Biomarker [23]
ANXA10 TT0NL6U Strong Biomarker [24]
ARAF TT5TURO Strong Genetic Variation [25]
ASPH TT2KHP7 Strong Biomarker [26]
BAP1 TT47RXJ Strong Genetic Variation [27]
CBLB TTHRAIJ Strong Altered Expression [28]
CEACAM5 TTY6DTE Strong Altered Expression [29]
CLDN18 TT6PKBX Strong Altered Expression [30]
EGFR TTGKNB4 Strong Biomarker [31]
ERBB2 TTR5TV4 Strong Genetic Variation [32]
FABP5 TTNT2S6 Strong Biomarker [33]
FGFR2 TTGJVQM Strong Genetic Variation [34]
FGFR4 TT1KX2S Strong Altered Expression [35]
GNE TT4DP5S Strong Genetic Variation [36]
HDAC8 TTT6LFV Strong Altered Expression [37]
IL12RB2 TT4SWR8 Strong Biomarker [38]
IMP3 TTEJA2R Strong Biomarker [39]
KAT6A TT6O1J0 Strong Genetic Variation [40]
KCNN3 TT9JH25 Strong Genetic Variation [41]
KIR2DL2 TTU0P73 Strong Biomarker [42]
KIR2DL3 TTEX3SI Strong Biomarker [42]
KRT19 TT3JF9E Strong Biomarker [43]
MAPK12 TTYT93M Strong Biomarker [44]
NEK8 TT8AH9I Strong Biomarker [45]
PBRM1 TTH8ZRL Strong Genetic Variation [27]
PCSK7 TTD30LY Strong Altered Expression [46]
PRSS1 TT2WR1T Strong Biomarker [47]
PTEN TTXJ3W7 Strong Altered Expression [48]
PTP4A1 TTA8GFO Strong Biomarker [49]
PTPN14 TTNIR6C Strong Biomarker [50]
RBP5 TTV2DON Strong Biomarker [51]
REG4 TTVZEHU Strong Biomarker [52]
RNF43 TTD91BL Strong Genetic Variation [53]
SLC29A1 TTLXAKE Strong Biomarker [54]
STYK1 TTRMCYJ Strong Biomarker [55]
TP53 TT12KOD Strong Biomarker [56]
USP14 TTVSYP9 Strong Altered Expression [57]
------------------------------------------------------------------------------------
⏷ Show the Full List of 56 DTT(s)
This Disease Is Related to 4 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
CYP7A1 DEDZRQ1 moderate Biomarker [35]
UGDH DE48Q2Z Strong Biomarker [58]
UGT2B11 DE7TIN4 Strong Altered Expression [59]
ME1 DE97WM8 Definitive Biomarker [60]
------------------------------------------------------------------------------------
This Disease Is Related to 90 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
FCGBP OT63T6XQ Limited Biomarker [61]
H2AZ1 OT3KJJNQ Limited Biomarker [62]
KMT2C OTC59BCO Limited Biomarker [63]
PEG3 OTHQW98S Limited Biomarker [63]
ROBO2 OTFJ9FQW Limited Biomarker [63]
AZIN2 OT8OB7CG moderate Biomarker [64]
CDX2 OTCG4TSY moderate Biomarker [31]
CEACAM7 OTKFDTZY moderate Biomarker [9]
CHD1L OT7CZK7C moderate Biomarker [65]
CXCL5 OTZOUPCA moderate Altered Expression [66]
GADL1 OTJM4A0R moderate Biomarker [64]
MUC2 OT3X4QVX moderate Biomarker [31]
PSG2 OT2EIXAI moderate Biomarker [9]
PTPN3 OTSLZBVY moderate Genetic Variation [67]
S100A11 OTI57KDN moderate Biomarker [68]
STIL OT9799VN moderate Biomarker [17]
ADGRE2 OTUYJVYG Strong Altered Expression [69]
ADGRE5 OTTSB84Q Strong Altered Expression [69]
ADRM1 OTOU4EY6 Strong Altered Expression [70]
AGR3 OTONJPDP Strong Altered Expression [71]
ARID1A OTRWDV3P Strong Biomarker [72]
AZU1 OTHXU264 Strong Biomarker [73]
C15orf48 OT85J32K Strong Biomarker [74]
CA10 OTC3N1F6 Strong Biomarker [75]
CAPNS1 OT95EBBD Strong Altered Expression [76]
CRYL1 OT0SJSJM Strong Biomarker [58]
CUL4A OTTBV70J Strong Altered Expression [77]
DLEC1 OTMKKBUW Strong Posttranslational Modification [78]
EBAG9 OTTQLQCP Strong Altered Expression [79]
EEF1A2 OT9Z23K5 Strong Altered Expression [80]
EYA4 OTINGR3Z Strong Altered Expression [81]
FBLN1 OT5MHHOP Strong Altered Expression [82]
GAB1 OTQKE6V4 Strong Biomarker [83]
GEMIN2 OT4L6TLL Strong Altered Expression [84]
GINS2 OT974IYI Strong Altered Expression [85]
GLUD1 OTXKOCUH Strong Biomarker [58]
GNAS OTMH8BKJ Strong Biomarker [86]
H6PD OTO7TNDD Strong Biomarker [58]
HDLBP OTKDEEYX Strong Biomarker [73]
HEBP1 OTR9MPDX Strong Biomarker [73]
HGD OTTKLQOO Strong Biomarker [87]
HHLA2 OTYBTVQS Strong Altered Expression [88]
HOMER1 OTWFD3SI Strong Biomarker [89]
HOXB7 OTC7WYU8 Strong Altered Expression [90]
ID3 OTUULW5Z Strong Biomarker [91]
IDH2 OTTQA4PB Strong Biomarker [92]
ITGA3 OTBCH21D Strong Biomarker [93]
KLHL2 OT1NG8V7 Strong Biomarker [94]
LRRFIP1 OTN7XAUD Strong Biomarker [95]
MACC1 OTV3DLX0 Strong Altered Expression [96]
MAGI1 OTMV4ASV Strong Genetic Variation [27]
MAPK6 OTDDNF3Q Strong Biomarker [44]
MEGF8 OT5G38CH Strong Altered Expression [97]
MEST OT8Q4U8Y Strong Genetic Variation [98]
MFAP5 OT46VXSG Strong Biomarker [99]
MOB1A OTSPBZ4Z Strong Biomarker [100]
MOB4 OTOQRMAS Strong Biomarker [100]
MPC1 OT6DYFUO Strong Biomarker [101]
MUC13 OTWKS9MF Strong Altered Expression [102]
MUC5B OTPW6K5C Strong Biomarker [24]
MUC6 OTPVL723 Strong Biomarker [31]
NEUROG1 OTMJZP9G Strong Biomarker [103]
NRDC OTWBBCXO Strong Biomarker [104]
NSD2 OTQ6SW4R Strong Altered Expression [105]
NUMB OTMB586Q Strong Biomarker [106]
PAX1 OT0Y3MIM Strong Posttranslational Modification [107]
PDZK1IP1 OTWA6M5K Strong Altered Expression [80]
PFKP OTFP7AA8 Strong Altered Expression [108]
PPA1 OTHZK1QB Strong Biomarker [109]
PPFIBP2 OTXQO55Y Strong Biomarker [44]
PPHLN1 OTWG1WIH Strong Genetic Variation [25]
PRDM5 OTU1GB68 Strong Biomarker [110]
PRKACB OT6RMDCE Strong Genetic Variation [111]
RAB1A OTKPHRD0 Strong Biomarker [112]
RAD51AP1 OTXM7UTD Strong Biomarker [113]
RCOR3 OT5LATME Strong Altered Expression [114]
RNF2 OTFPLOIN Strong Genetic Variation [27]
RPL41 OTFW5IFO Strong Biomarker [80]
RPS4X OTIH80EK Strong Altered Expression [115]
S100A7 OTJFVJRF Strong Biomarker [116]
SCAF11 OTX59D0X Strong Altered Expression [84]
SGMS1 OTZQE7PW Strong Biomarker [100]
SHMT2 OT5NCAZN Strong Biomarker [117]
SLBP OTVYYQRT Strong Biomarker [73]
SMAD4 OTWQWCKG Strong Altered Expression [118]
SSX4 OT0E4H2D Strong Biomarker [119]
STAM2 OT9OBWPH Strong Biomarker [73]
TFDP1 OT6RZ7VT Strong Biomarker [120]
TRAF4 OTJLRVMC Strong Altered Expression [121]
TRIM44 OT0B1T2B Strong Altered Expression [122]
------------------------------------------------------------------------------------
⏷ Show the Full List of 90 DOT(s)

References

1 FDA Approved Drug Products from FDA Official Website. 2022. Application Number: 214801.
2 Clinical pipeline report, company report or official report of the Pharmaceutical Research and Manufacturers of America (PhRMA)
3 ClinicalTrials.gov (NCT03633773) Safety and Efficacy Evaluation of MUC-1 CART in the Treatment of Intrahepatic Cholangiocarcinoma
4 Application of mesothelin immunostaining in tumor diagnosis.Am J Surg Pathol. 2003 Nov;27(11):1418-28. doi: 10.1097/00000478-200311000-00003.
5 Chronic bile duct injury associated with fibrotic matrix microenvironment provokes cholangiocarcinoma in p53-deficient mice.Cancer Res. 2006 Jul 1;66(13):6622-7. doi: 10.1158/0008-5472.CAN-05-4609.
6 Genomic spectra of biliary tract cancer.Nat Genet. 2015 Sep;47(9):1003-10. doi: 10.1038/ng.3375. Epub 2015 Aug 10.
7 Sodium iodide symporter is expressed at the preneoplastic stages of liver carcinogenesis and in human cholangiocarcinoma.Gastroenterology. 2007 Apr;132(4):1495-503. doi: 10.1053/j.gastro.2007.01.044. Epub 2007 Jan 26.
8 The cells and conductance mediating cholinergic neurotransmission in the murine proximal stomach.J Physiol. 2018 May 1;596(9):1549-1574. doi: 10.1113/JP275478. Epub 2018 Mar 23.
9 Response Evaluation Criteria in Cancer of the Liver version5 (RECICL 2019 revised version).Hepatol Res. 2019 Sep;49(9):981-989. doi: 10.1111/hepr.13394. Epub 2019 Jul 25.
10 Block of NF-kB signaling accelerates MYC-driven hepatocellular carcinogenesis and modifies the tumor phenotype towards combined hepatocellular cholangiocarcinoma.Cancer Lett. 2019 Aug 28;458:113-122. doi: 10.1016/j.canlet.2019.05.023. Epub 2019 May 22.
11 Improving pathological early diagnosis and differential biomarker value for hepatocellular carcinoma via RNAscope technology.Hepatol Int. 2020 Jan;14(1):96-104. doi: 10.1007/s12072-019-10006-z. Epub 2019 Dec 12.
12 Combined hepatocellular-cholangiocarcinoma: An analysis of clinicopathological characteristics after surgery.Medicine (Baltimore). 2019 Sep;98(38):e17102. doi: 10.1097/MD.0000000000017102.
13 Characterization and prognostic significance of mortalin, Bcl-2 and Bax in intrahepatic cholangiocarcinoma.Oncol Lett. 2018 Feb;15(2):2161-2168. doi: 10.3892/ol.2017.7570. Epub 2017 Dec 8.
14 Combination of anti-L1 cell adhesion molecule antibody and gemcitabine or cisplatin improves the therapeutic response of intrahepatic cholangiocarcinoma.PLoS One. 2017 Feb 6;12(2):e0170078. doi: 10.1371/journal.pone.0170078. eCollection 2017.
15 miR-424-5p represses the metastasis and invasion of intrahepatic cholangiocarcinoma by targeting ARK5.Int J Biol Sci. 2019 Jun 4;15(8):1591-1599. doi: 10.7150/ijbs.34113. eCollection 2019.
16 Human papillomavirus genotype distribution in high grade cervical lesions (CIN 2/3) in France: EDITH study.Int J Cancer. 2008 Jan 15;122(2):424-7. doi: 10.1002/ijc.23093.
17 Analysis of cytosine-adenine repeats in P1 promoter region of IGF-1 gene in peripheral blood cells and cervical tissue samples of females with cervical intraepithelial lesions and squamous cervical cancer.Mol Med Rep. 2015 Feb;11(2):766-74. doi: 10.3892/mmr.2014.2916. Epub 2014 Nov 10.
18 Inducible liver-specific overexpression of gankyrin in zebrafish results in spontaneous intrahepatic cholangiocarcinoma and hepatocellular carcinoma formation.Biochem Biophys Res Commun. 2017 Aug 26;490(3):1052-1058. doi: 10.1016/j.bbrc.2017.06.164. Epub 2017 Jun 28.
19 PTK7 is a novel oncogenic target for esophageal squamous cell carcinoma.World J Surg Oncol. 2017 May 25;15(1):105. doi: 10.1186/s12957-017-1172-x.
20 Two classes of intrahepatic cholangiocarcinoma defined by relative abundance of mutations and copy number alterations.Oncotarget. 2016 Apr 26;7(17):23825-36. doi: 10.18632/oncotarget.8183.
21 Transcriptomic and histopathological analysis of cholangiolocellular differentiation trait in intrahepatic cholangiocarcinoma.Liver Int. 2018 Jan;38(1):113-124. doi: 10.1111/liv.13492. Epub 2017 Jul 10.
22 MicroRNA-101 inhibits the migration and invasion of intrahepatic cholangiocarcinoma cells via direct suppression of vascular endothelial growth factor-C.Mol Med Rep. 2015 Nov;12(5):7079-85. doi: 10.3892/mmr.2015.4239. Epub 2015 Aug 21.
23 Radiological features and outcomes ofcombined hepatocellular-cholangiocarcinoma inpatients undergoingsurgical resection.J Formos Med Assoc. 2020 Jan;119(1 Pt 1):125-133. doi: 10.1016/j.jfma.2019.02.012. Epub 2019 Mar 12.
24 Annexin A10 optimally differentiates between intrahepatic cholangiocarcinoma and hepatic metastases of pancreatic ductal adenocarcinoma: a comparative study of immunohistochemical markers and panels.Virchows Arch. 2017 May;470(5):537-543. doi: 10.1007/s00428-017-2114-2. Epub 2017 Mar 29.
25 Massive parallel sequencing uncovers actionable FGFR2-PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma.Nat Commun. 2015 Jan 22;6:6087. doi: 10.1038/ncomms7087.
26 Immunization with aspartate--hydroxylase-loaded dendritic cells produces antitumor effects in a rat model of intrahepatic cholangiocarcinoma.Hepatology. 2012 Jan;55(1):86-97. doi: 10.1002/hep.24629.
27 Prognostic role of BAP-1 and PBRM-1 expression in intrahepatic cholangiocarcinoma.Virchows Arch. 2019 Jan;474(1):29-37. doi: 10.1007/s00428-018-2478-y. Epub 2018 Oct 30.
28 Expression of long non-coding RNA ANRIL predicts a poor prognosis in intrahepatic cholangiocarcinoma.Dig Liver Dis. 2019 Sep;51(9):1337-1343. doi: 10.1016/j.dld.2019.03.019. Epub 2019 Apr 27.
29 Clinical Characteristics and Prognostic Factors of Patients with Intrahepatic Cholangiocarcinoma with Fever: A Propensity Score Matching Analysis.Oncologist. 2019 Jul;24(7):997-1007. doi: 10.1634/theoncologist.2018-0268. Epub 2019 Mar 25.
30 EVI1 expression is associated with aggressive behavior in intrahepatic cholangiocarcinoma.Virchows Arch. 2019 Jan;474(1):39-46. doi: 10.1007/s00428-018-2476-0. Epub 2018 Oct 23.
31 Mucinous intrahepatic cholangiocarcinoma: a distinct variant.Hum Pathol. 2018 Aug;78:131-137. doi: 10.1016/j.humpath.2018.04.010. Epub 2018 Apr 23.
32 Gallbladder cancer harboring ERBB2 mutation on the primary and metastatic site: A case report.World J Gastrointest Oncol. 2019 Sep 15;11(9):761-767. doi: 10.4251/wjgo.v11.i9.761.
33 Fatty acid-binding protein 5 promotes cell proliferation and invasion in human intrahepatic cholangiocarcinoma.Oncol Rep. 2012 Oct;28(4):1283-92. doi: 10.3892/or.2012.1922. Epub 2012 Jul 19.
34 Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma.Br J Cancer. 2019 Jan;120(2):165-171. doi: 10.1038/s41416-018-0334-0. Epub 2018 Nov 13.
35 Multiplexed gene expression profiling identifies the FGFR4 pathway as a novel biomarker in intrahepatic cholangiocarcinoma.Oncotarget. 2017 Jun 13;8(24):38592-38601. doi: 10.18632/oncotarget.16951.
36 New observation of sialuria prompts detection of liver tumor in previously reported patient.Mol Genet Metab. 2016 Jun;118(2):92-9. doi: 10.1016/j.ymgme.2016.04.004. Epub 2016 Apr 16.
37 Decreased expression of HDAC8 indicates poor prognosis in patients with intrahepatic cholangiocarcinoma.Hepatobiliary Pancreat Dis Int. 2019 Oct;18(5):464-470. doi: 10.1016/j.hbpd.2019.07.006. Epub 2019 Jul 24.
38 Overexpression of interleukin-35 in intrahepatic cholangiocarcinoma is a prognostic indicator after curative resection.Cancer Sci. 2018 Apr;109(4):1195-1206. doi: 10.1111/cas.13535. Epub 2018 Mar 25.
39 IMP3 expression is associated with poor outcome and epigenetic deregulation in intrahepatic cholangiocarcinoma.Hum Pathol. 2014 Jun;45(6):1184-91. doi: 10.1016/j.humpath.2014.01.016. Epub 2014 Feb 6.
40 Intrahepatic cholangiocarcinoma after Fontan procedure in an adult with visceral heterotaxy.Pathol Res Pract. 2018 Jun;214(6):914-918. doi: 10.1016/j.prp.2018.03.016. Epub 2018 Mar 15.
41 Whole-exome mutational and transcriptional landscapes of combined hepatocellular cholangiocarcinoma and intrahepatic cholangiocarcinoma reveal molecular diversity.Biochim Biophys Acta Mol Basis Dis. 2018 Jun;1864(6 Pt B):2360-2368. doi: 10.1016/j.bbadis.2018.01.027. Epub 2018 Feb 1.
42 Implication of HLA-C and KIR alleles in human papillomavirus infection and associated cervical lesions.Viral Immunol. 2014 Nov;27(9):468-70. doi: 10.1089/vim.2014.0017. Epub 2014 Sep 4.
43 Keratin 19-expressing hepatocellular carcinoma and small-duct type intrahepatic cholangiocarcinoma show a similar postoperative clinical course but have distinct genetic features.Histopathology. 2019 Sep;75(3):385-393. doi: 10.1111/his.13884. Epub 2019 Jul 16.
44 Metformin potentiates the effect of arsenic trioxide suppressing intrahepatic cholangiocarcinoma: roles of p38 MAPK, ERK3, and mTORC1.J Hematol Oncol. 2017 Feb 28;10(1):59. doi: 10.1186/s13045-017-0424-0.
45 Blocking of the EGFR-STAT3 signaling pathway through afatinib treatment inhibited the intrahepatic cholangiocarcinoma.Exp Ther Med. 2018 Jun;15(6):4995-5000. doi: 10.3892/etm.2018.6038. Epub 2018 Apr 5.
46 Reduced levels of N'-methyl-2-pyridone-5-carboxamide and lysophosphatidylcholine 16:0 in the serum of patients with intrahepatic cholangiocarcinoma, and the correlation with recurrence-free survival.Oncotarget. 2017 Nov 22;8(68):112598-112609. doi: 10.18632/oncotarget.22607. eCollection 2017 Dec 22.
47 Tumor-derived trypsin enhances proliferation of intrahepatic cholangiocarcinoma cells by activating protease-activated receptor-2.Int J Oncol. 2010 Apr;36(4):793-800. doi: 10.3892/ijo_00000555.
48 Combination of Kras activation and PTEN deletion contributes to murine hepatopancreatic ductal malignancy.Cancer Lett. 2018 May 1;421:161-169. doi: 10.1016/j.canlet.2018.02.017. Epub 2018 Feb 13.
49 Protein tyrosine phosphatase PTP4A1 promotes proliferation and epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma via the PI3K/AK... Oncotarget. 2016 Nov 15;7(46):75210-75220.
50 MiR-21 promotes intrahepatic cholangiocarcinoma proliferation and growth in vitro and in vivo by targeting PTPN14 and PTEN.Oncotarget. 2015 Mar 20;6(8):5932-46. doi: 10.18632/oncotarget.3465.
51 RPB5-Mediating Protein Promotes Cholangiocarcinoma Tumorigenesis and Drug Resistance by Competing With NRF2 for KEAP1 Binding.Hepatology. 2020 Jun;71(6):2005-2022. doi: 10.1002/hep.30962. Epub 2020 Feb 20.
52 Reg proteins promote acinar-to-ductal metaplasia and act as novel diagnostic and prognostic markers in pancreatic ductal adenocarcinoma.Oncotarget. 2016 Nov 22;7(47):77838-77853. doi: 10.18632/oncotarget.12834.
53 Ring finger protein 43 expression is associated with genetic alteration status and poor prognosis among patients with intrahepatic cholangiocarcinoma.Hum Pathol. 2016 Jun;52:47-54. doi: 10.1016/j.humpath.2015.12.027. Epub 2016 Feb 1.
54 Membrane human equilibrative nucleoside transporter 1 is associated with a high proliferation rate and worse survival in resected intrahepatic cholangiocarcinoma patients not receiving adjuvant treatments.Eur J Cancer. 2019 Jan;106:160-170. doi: 10.1016/j.ejca.2018.11.005. Epub 2018 Dec 5.
55 Depletion of STYK1 inhibits intrahepatic cholangiocarcinoma development both in vitro and in vivo.Tumour Biol. 2016 Oct;37(10):14173-14181. doi: 10.1007/s13277-016-5188-6. Epub 2016 Aug 19.
56 CRISPR-SONIC: targeted somatic oncogene knock-in enables rapid in vivo cancer modeling.Genome Med. 2019 Apr 16;11(1):21. doi: 10.1186/s13073-019-0627-9.
57 Ubiquitin-specific protease 14 expression associated with intrahepatic cholangiocarcinoma cell differentiation.Asian Pac J Cancer Prev. 2011;12(3):775-9.
58 LncRNA TUG1 sponges miR-145 to promote cancer progression and regulate glutamine metabolism via Sirt3/GDH axis.Oncotarget. 2017 Oct 19;8(69):113650-113661. doi: 10.18632/oncotarget.21922. eCollection 2017 Dec 26.
59 Comparison of gene expression profiles between Opisthorchis viverrini and non-Opisthorchis viverrini associated human intrahepatic cholangiocarcinoma.Hepatology. 2006 Oct;44(4):1025-38. doi: 10.1002/hep.21330.
60 Malic enzyme 1 is a potential marker of combined hepatocellular cholangiocarcinoma, subtype with stem-cell features, intermediate-cell type.Hepatol Res. 2019 Sep;49(9):1066-1075. doi: 10.1111/hepr.13365. Epub 2019 Jun 18.
61 Whole-exome sequencing reveals the origin and evolution of hepato-cholangiocarcinoma.Nat Commun. 2018 Mar 1;9(1):894. doi: 10.1038/s41467-018-03276-y.
62 H2A.Z regulates tumorigenesis, metastasis and sensitivity to cisplatin in intrahepatic cholangiocarcinoma.Int J Oncol. 2018 Apr;52(4):1235-1245. doi: 10.3892/ijo.2018.4292. Epub 2018 Feb 28.
63 Exome sequencing of liver fluke-associated cholangiocarcinoma.Nat Genet. 2012 May 6;44(6):690-3. doi: 10.1038/ng.2273.
64 Differentiation of hypervascular primary hepatic tumors showing hepatobiliary hypointensity on gadoxetic acid-enhanced magnetic resonance imaging.Abdom Radiol (NY). 2019 Sep;44(9):3115-3126. doi: 10.1007/s00261-019-02068-2.
65 [Corrigendum] CHD1L is associated with poor survival and promotes the proliferation and metastasis of intrahepatic cholangiocarcinoma.Oncol Rep. 2019 Oct;42(4):1631. doi: 10.3892/or.2019.7262. Epub 2019 Aug 5.
66 Prognostic significance of CXCL5 expression in cancer patients: a meta-analysis.Cancer Cell Int. 2018 May 2;18:68. doi: 10.1186/s12935-018-0562-7. eCollection 2018.
67 PTPN3 acts as a tumor suppressor and boosts TGF- signaling independent of its phosphatase activity.EMBO J. 2019 Jul 15;38(14):e99945. doi: 10.15252/embj.201899945. Epub 2019 Jun 14.
68 S100A11 promotes cell proliferation via P38/MAPK signaling pathway in intrahepatic cholangiocarcinoma.Mol Carcinog. 2019 Jan;58(1):19-30. doi: 10.1002/mc.22903. Epub 2018 Oct 21.
69 Expression and prognostic value of soluble CD97 and its ligand CD55 in intrahepatic cholangiocarcinoma.Tumour Biol. 2017 Mar;39(3):1010428317694319. doi: 10.1177/1010428317694319.
70 RA190, a Proteasome Subunit ADRM1 Inhibitor, Suppresses Intrahepatic Cholangiocarcinoma by Inducing NF-KB-Mediated Cell Apoptosis.Cell Physiol Biochem. 2018;47(3):1152-1166. doi: 10.1159/000490210. Epub 2018 Jun 15.
71 Differential expression of anterior gradient protein 3 in intrahepatic cholangiocarcinoma and hepatocellular carcinoma.Exp Mol Pathol. 2014 Jun;96(3):375-81. doi: 10.1016/j.yexmp.2014.04.002. Epub 2014 Apr 18.
72 High Beclin-1 and ARID1A expression corelates with poor survival and high recurrence in intrahepatic cholangiocarcinoma: a histopathological retrospective study.BMC Cancer. 2019 Mar 8;19(1):213. doi: 10.1186/s12885-019-5429-3.
73 Differentiation between inflammatory myofibroblastic tumor and cholangiocarcinoma manifesting as target appearance on gadoxetic acid-enhanced MRI.Abdom Radiol (NY). 2019 Apr;44(4):1395-1406. doi: 10.1007/s00261-018-1847-y.
74 Discovery of novel methylation biomarkers in cervical carcinoma by global demethylation and microarray analysis.Cancer Epidemiol Biomarkers Prev. 2006 Jan;15(1):114-23. doi: 10.1158/1055-9965.EPI-05-0323.
75 A chimeric antibody to L1 cell adhesion molecule shows therapeutic effect in an intrahepatic cholangiocarcinoma model.Exp Mol Med. 2012 Apr 30;44(4):293-302. doi: 10.3858/emm.2012.44.4.027.
76 Prognostic significance of Capn4 overexpression in intrahepatic cholangiocarcinoma.PLoS One. 2013;8(1):e54619. doi: 10.1371/journal.pone.0054619. Epub 2013 Jan 22.
77 CUL4A overexpression as an independent adverse prognosticator in intrahepatic cholangiocarcinoma.BMC Cancer. 2017 Jun 2;17(1):395. doi: 10.1186/s12885-017-3389-z.
78 DLEC1 methylation is associated with a better clinical outcome in patients with intrahepatic cholangiocarcinoma of the small duct subtype.Virchows Arch. 2019 Jul;475(1):49-58. doi: 10.1007/s00428-018-02511-7. Epub 2019 Jan 4.
79 The tumor-associated antigen, RCAS1, can be expressed in immune-mediated diseases as well as in carcinomas of biliary tract.J Hepatol. 2002 Jun;36(6):786-92. doi: 10.1016/s0168-8278(02)00066-1.
80 Overexpression of PDZK1IP1, EEF1A2 and RPL41 genes in intrahepatic cholangiocarcinoma.Mol Med Rep. 2016 Jun;13(6):4786-90. doi: 10.3892/mmr.2016.5110. Epub 2016 Apr 12.
81 EYA4 gene functions as a prognostic marker and inhibits the growth of intrahepatic cholangiocarcinoma.Chin J Cancer. 2016 Jul 28;35(1):70. doi: 10.1186/s40880-016-0133-z.
82 The clinical value of Fibulin-1 for prognosis and its prospective mechanism in intrahepatic cholangiocarcinoma.HPB (Oxford). 2019 Apr;21(4):499-507. doi: 10.1016/j.hpb.2018.09.002. Epub 2018 Sep 26.
83 Gab1 regulates proliferation and migration through the PI3K/Akt signaling pathway in intrahepatic cholangiocarcinoma.Tumour Biol. 2015 Nov;36(11):8367-77. doi: 10.1007/s13277-015-3590-0. Epub 2015 May 28.
84 MiR-590-3p suppresses epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma by inhibiting SIP1 expression.Oncotarget. 2017 May 23;8(21):34698-34708. doi: 10.18632/oncotarget.16150.
85 Up-regulation of PSF2, a member of the GINS multiprotein complex, in intrahepatic cholangiocarcinoma.Oncol Rep. 2005 Sep;14(3):701-6.
86 High throughput molecular profiling reveals differential mutation patterns in intrahepatic cholangiocarcinomas arising in chronic advanced liver diseases.Mod Pathol. 2014 May;27(5):731-9. doi: 10.1038/modpathol.2013.194. Epub 2013 Nov 1.
87 A multi-organ cancer study of the classification performance using 2D and 3D image features in radiomics analysis.Phys Med Biol. 2019 Nov 4;64(21):215009. doi: 10.1088/1361-6560/ab489f.
88 HHLA2 in intrahepatic cholangiocarcinoma: an immune checkpoint with prognostic significance and wider expression compared with PD-L1.J Immunother Cancer. 2019 Mar 18;7(1):77. doi: 10.1186/s40425-019-0554-8.
89 Identification of Homer1 as a potential prognostic marker for intrahepatic cholangiocarcinoma.Asian Pac J Cancer Prev. 2014;15(7):3299-304. doi: 10.7314/apjcp.2014.15.7.3299.
90 Upregulated expression of HOXB7 in intrahepatic cholangiocarcinoma is associated with tumor cell metastasis and poor prognosis.Lab Invest. 2019 Jun;99(6):736-748. doi: 10.1038/s41374-018-0150-4. Epub 2019 Jan 21.
91 ID3 Promotes Stem Cell Features and Predicts Chemotherapeutic Response of Intrahepatic Cholangiocarcinoma.Hepatology. 2019 May;69(5):1995-2012. doi: 10.1002/hep.30404. Epub 2019 Mar 8.
92 Integrative Analysis Defines Distinct Prognostic Subgroups of Intrahepatic Cholangiocarcinoma.Hepatology. 2019 May;69(5):2091-2106. doi: 10.1002/hep.30493. Epub 2019 Feb 28.
93 High Expression of ITGA3 Promotes Proliferation and Cell Cycle Progression and Indicates Poor Prognosis in Intrahepatic Cholangiocarcinoma.Biomed Res Int. 2018 Feb 4;2018:2352139. doi: 10.1155/2018/2352139. eCollection 2018.
94 HRAS, EGFR, MET, and RON Genes Are Recurrently Activated by Provirus Insertion in Liver Tumors Induced by the Retrovirus Myeloblastosis-Associated Virus 2.J Virol. 2017 Sep 27;91(20):e00467-17. doi: 10.1128/JVI.00467-17. Print 2017 Oct 15.
95 Knockdown of Nedd8conjugating enzyme UBE2M suppresses the proliferation and induces the apoptosis of intrahepatic cholangiocarcinoma cells.Oncol Rep. 2019 Dec;42(6):2670-2679. doi: 10.3892/or.2019.7327. Epub 2019 Sep 20.
96 Metastasis-associated in colon cancer 1 is an independent prognostic biomarker for survival in Klatskin tumor patients.Hepatology. 2015 Sep;62(3):841-50. doi: 10.1002/hep.27885. Epub 2015 Jun 26.
97 Reduced selenium-binding protein 1 correlates with a poor prognosis in intrahepatic cholangiocarcinoma and promotes the cell epithelial-mesenchymal transition.Am J Transl Res. 2018 Nov 15;10(11):3567-3578. eCollection 2018.
98 PEG1/MEST and IGF2 DNA methylation in CIN and in cervical cancer.Clin Transl Oncol. 2014 Mar;16(3):266-72. doi: 10.1007/s12094-013-1067-4. Epub 2013 Jun 18.
99 MFAP5 facilitates the aggressiveness of intrahepatic Cholangiocarcinoma by activating the Notch1 signaling pathway.J Exp Clin Cancer Res. 2019 Nov 27;38(1):476. doi: 10.1186/s13046-019-1477-4.
100 Altered Expression of Hippo Signaling Pathway Molecules in Intrahepatic Cholangiocarcinoma.Oncology. 2017;93(1):67-74. doi: 10.1159/000463390. Epub 2017 Apr 28.
101 Mitochondrial pyruvate carrier modulates the epithelial-mesenchymal transition in cholangiocarcinoma.Oncol Rep. 2018 Mar;39(3):1276-1282. doi: 10.3892/or.2017.6172. Epub 2017 Dec 20.
102 MUC13 promotes intrahepatic cholangiocarcinoma progression viaEGFR/PI3K/AKT pathways.J Hepatol. 2020 Apr;72(4):761-773. doi: 10.1016/j.jhep.2019.11.021. Epub 2019 Dec 16.
103 Methylation profiles of multiple CpG island loci in extrahepatic cholangiocarcinoma versus those of intrahepatic cholangiocarcinomas.Arch Pathol Lab Med. 2007 Jun;131(6):923-30. doi: 10.5858/2007-131-923-MPOMCI.
104 Serum Nardilysin, a Surrogate Marker for Epithelial-Mesenchymal Transition, Predicts Prognosis of Intrahepatic Cholangiocarcinoma after Surgical Resection.Clin Cancer Res. 2019 Jan 15;25(2):619-628. doi: 10.1158/1078-0432.CCR-18-0124. Epub 2018 Oct 23.
105 NSD2 inhibition suppresses metastasis in cervical cancer by promoting TGF-/TGF-RI/SMADs signaling.Biochem Biophys Res Commun. 2019 Nov 12;519(3):489-496. doi: 10.1016/j.bbrc.2019.08.020. Epub 2019 Sep 14.
106 Loss of nuclear NOTCH1, but not its negative regulator NUMB, is an independent predictor of cervical malignancy.Oncotarget. 2018 Apr 10;9(27):18916-18928. doi: 10.18632/oncotarget.24828. eCollection 2018 Apr 10.
107 Association between dense PAX1 promoter methylation and HPV16 infection in cervical squamous epithelial neoplasms of Xin Jiang Uyghur and Han women.Gene. 2020 Jan 10;723:144142. doi: 10.1016/j.gene.2019.144142. Epub 2019 Oct 4.
108 Mutant IDH1 confers resistance to energy stress in normal biliary cells through PFKP-induced aerobic glycolysis and AMPK activation.Sci Rep. 2019 Dec 11;9(1):18859. doi: 10.1038/s41598-019-55211-w.
109 Pyrophosphatase 1 expression is associated with future recurrence and overall survival in Chinese patients with intrahepatic cholangiocarcinoma.Oncol Lett. 2018 May;15(5):8095-8101. doi: 10.3892/ol.2018.8278. Epub 2018 Mar 15.
110 Necroptosis microenvironment directs lineage commitment in liver cancer.Nature. 2018 Oct;562(7725):69-75. doi: 10.1038/s41586-018-0519-y. Epub 2018 Sep 12.
111 FGFR2 genomic aberrations: Achilles heel in the management of advanced cholangiocarcinoma.Cancer Treat Rev. 2019 Aug;78:1-7. doi: 10.1016/j.ctrv.2019.06.003. Epub 2019 Jun 22.
112 Hypoxia-mediated miR-212-3p downregulation enhances progression of intrahepatic cholangiocarcinoma through upregulation of Rab1a.Cancer Biol Ther. 2018;19(11):984-993. doi: 10.1080/15384047.2018.1456608. Epub 2018 May 14.
113 Enhanced expression of RAD51 associating protein-1 is involved in the growth of intrahepatic cholangiocarcinoma cells.Clin Cancer Res. 2008 Mar 1;14(5):1333-9. doi: 10.1158/1078-0432.CCR-07-1381.
114 Integrated mRNA and lncRNA expression profiling for exploring metastatic biomarkers of human intrahepatic cholangiocarcinoma.Am J Cancer Res. 2017 Mar 1;7(3):688-699. eCollection 2017.
115 Overexpression of the X-linked ribosomal protein S4 predicts poor prognosis in patients with intrahepatic cholangiocarcinoma.Oncol Lett. 2017 Jul;14(1):41-46. doi: 10.3892/ol.2017.6137. Epub 2017 May 8.
116 MicroRNA-26b-5p regulates cell proliferation, invasion and metastasis in human intrahepatic cholangiocarcinoma by targeting S100A7.Oncol Lett. 2018 Jan;15(1):386-392. doi: 10.3892/ol.2017.7331. Epub 2017 Nov 2.
117 SHMT2 Overexpression Predicts Poor Prognosis in Intrahepatic Cholangiocarcinoma.Gastroenterol Res Pract. 2018 Aug 28;2018:4369253. doi: 10.1155/2018/4369253. eCollection 2018.
118 Histological and molecular characterization of intrahepatic bile duct cancers suggests an expanded definition of perihilar cholangiocarcinoma.HPB (Oxford). 2019 Feb;21(2):226-234. doi: 10.1016/j.hpb.2018.07.021. Epub 2018 Aug 28.
119 Expression of cancer-testis antigen (CTA) genes in intrahepatic cholangiocarcinoma.Ann Surg Oncol. 2004 Oct;11(10):934-40. doi: 10.1245/ASO.2004.01.029.
120 Recurrent Amplification at 13q34 Targets at CUL4A, IRS2, and TFDP1 As an Independent Adverse Prognosticator in Intrahepatic Cholangiocarcinoma.PLoS One. 2015 Dec 18;10(12):e0145388. doi: 10.1371/journal.pone.0145388. eCollection 2015.
121 Role of the overexpression of TRAF4 in predicting the prognosis of intrahepatic cholangiocarcinoma.Int J Oncol. 2018 Jul;53(1):286-296. doi: 10.3892/ijo.2018.4383. Epub 2018 Apr 26.
122 Elevated TRIM44 promotes intrahepatic cholangiocarcinoma progression by inducing cell EMT via MAPK signaling.Cancer Med. 2018 Mar;7(3):796-808. doi: 10.1002/cam4.1313. Epub 2018 Feb 15.