General Information of Drug Off-Target (DOT) (ID: OTGTKVGO)

DOT Name Eukaryotic translation initiation factor 3 subunit K (EIF3K)
Synonyms eIF3k; Eukaryotic translation initiation factor 3 subunit 12; Muscle-specific gene M9 protein; PLAC-24; eIF-3 p25; eIF-3 p28
Gene Name EIF3K
Related Disease
LambertEaton myasthenic syndrome ( )
Nemaline myopathy ( )
Advanced cancer ( )
Cardiac failure ( )
Cerebral palsy ( )
Congenital myopathy ( )
Congestive heart failure ( )
Duchenne muscular dystrophy ( )
facioscapulohumeral muscular dystrophy ( )
Glioma ( )
Hepatocellular carcinoma ( )
Knee osteoarthritis ( )
Limb-girdle muscular dystrophy ( )
Malignant hyperthermia of anesthesia ( )
Neoplasm ( )
Neuromuscular disease ( )
Neuromyelitis optica ( )
Non-insulin dependent diabetes ( )
Osteoporosis ( )
Ptosis ( )
Rhabdomyosarcoma ( )
Spinal muscular atrophy ( )
Autosomal recessive limb-girdle muscular dystrophy type 2D ( )
Congenital myasthenic syndrome ( )
Emery-Dreifuss muscular dystrophy ( )
Peripheral arterial disease ( )
Amyotrophic lateral sclerosis ( )
Adult lymphoma ( )
Lymphoma ( )
Pediatric lymphoma ( )
UniProt ID
EIF3K_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1RZ4; 3J8B; 3J8C; 6FEC; 6YBD; 6ZMW; 6ZON; 6ZP4; 6ZVJ; 7A09; 7QP6; 7QP7; 8PPL
Pfam ID
PF10075
Sequence
MAMFEQMRANVGKLLKGIDRYNPENLATLERYVETQAKENAYDLEANLAVLKLYQFNPAF
FQTTVTAQILLKALTNLPHTDFTLCKCMIDQAHQEERPIRQILYLGDLLETCHFQAFWQA
LDENMDLLEGITGFEDSVRKFICHVVGITYQHIDRWLLAEMLGDLSDSQLKVWMSKYGWS
ADESGQIFICSQEESIKPKNIVEKIDFDSVSSIMASSQ
Function
Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression.
Tissue Specificity Ubiquitous, with the highest levels of expression in brain, testis and kidney.
Reactome Pathway
Translation initiation complex formation (R-HSA-72649 )
Formation of a pool of free 40S subunits (R-HSA-72689 )
Formation of the ternary complex, and subsequently, the 43S complex (R-HSA-72695 )
Ribosomal scanning and start codon recognition (R-HSA-72702 )
GTP hydrolysis and joining of the 60S ribosomal subunit (R-HSA-72706 )
L13a-mediated translational silencing of Ceruloplasmin expression (R-HSA-156827 )

Molecular Interaction Atlas (MIA) of This DOT

30 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
LambertEaton myasthenic syndrome DISN0Q7Q Definitive Biomarker [1]
Nemaline myopathy DIS5IYLY Definitive Biomarker [2]
Advanced cancer DISAT1Z9 Strong Altered Expression [3]
Cardiac failure DISDC067 Strong Biomarker [4]
Cerebral palsy DIS82ODL Strong Altered Expression [5]
Congenital myopathy DISLSK9G Strong Biomarker [6]
Congestive heart failure DIS32MEA Strong Biomarker [4]
Duchenne muscular dystrophy DISRQ3NV Strong Altered Expression [7]
facioscapulohumeral muscular dystrophy DISSE0H0 Strong Altered Expression [8]
Glioma DIS5RPEH Strong Altered Expression [9]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [10]
Knee osteoarthritis DISLSNBJ Strong Biomarker [11]
Limb-girdle muscular dystrophy DISI9Y1Z Strong Posttranslational Modification [12]
Malignant hyperthermia of anesthesia DISYC9XI Strong Genetic Variation [13]
Neoplasm DISZKGEW Strong Genetic Variation [10]
Neuromuscular disease DISQTIJZ Strong Biomarker [14]
Neuromyelitis optica DISBFGKL Strong Biomarker [15]
Non-insulin dependent diabetes DISK1O5Z Strong Altered Expression [3]
Osteoporosis DISF2JE0 Strong Biomarker [16]
Ptosis DISJZNIY Strong Biomarker [17]
Rhabdomyosarcoma DISNR7MS Strong Biomarker [18]
Spinal muscular atrophy DISTLKOB Strong Genetic Variation [19]
Autosomal recessive limb-girdle muscular dystrophy type 2D DISRD6EW moderate Altered Expression [20]
Congenital myasthenic syndrome DISJLG2T moderate Genetic Variation [21]
Emery-Dreifuss muscular dystrophy DISYTPR5 moderate Posttranslational Modification [12]
Peripheral arterial disease DIS78WFB moderate Biomarker [22]
Amyotrophic lateral sclerosis DISF7HVM Disputed Biomarker [23]
Adult lymphoma DISK8IZR Limited Biomarker [24]
Lymphoma DISN6V4S Limited Biomarker [24]
Pediatric lymphoma DIS51BK2 Limited Biomarker [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 30 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Eukaryotic translation initiation factor 3 subunit K (EIF3K). [25]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Eukaryotic translation initiation factor 3 subunit K (EIF3K). [30]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Eukaryotic translation initiation factor 3 subunit K (EIF3K). [32]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of Eukaryotic translation initiation factor 3 subunit K (EIF3K). [32]
------------------------------------------------------------------------------------
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Eukaryotic translation initiation factor 3 subunit K (EIF3K). [26]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Eukaryotic translation initiation factor 3 subunit K (EIF3K). [27]
Acocantherin DM7JT24 Approved Acocantherin affects the expression of Eukaryotic translation initiation factor 3 subunit K (EIF3K). [28]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Eukaryotic translation initiation factor 3 subunit K (EIF3K). [29]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Eukaryotic translation initiation factor 3 subunit K (EIF3K). [31]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Eukaryotic translation initiation factor 3 subunit K (EIF3K). [33]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Eukaryotic translation initiation factor 3 subunit K (EIF3K). [34]
[3H]methyltrienolone DMTSGOW Investigative [3H]methyltrienolone affects the splicing of Eukaryotic translation initiation factor 3 subunit K (EIF3K). [35]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Pathogenic Mechanisms and Clinical Correlations in Autoimmune Myasthenic Syndromes.Semin Neurol. 2018 Jun;38(3):344-354. doi: 10.1055/s-0038-1660500. Epub 2018 Jul 16.
2 KBTBD13 interacts with Cullin 3 to form a functional ubiquitin ligase.Biochem Biophys Res Commun. 2012 May 18;421(4):743-9. doi: 10.1016/j.bbrc.2012.04.074. Epub 2012 Apr 20.
3 Anabolic and Pro-metabolic Functions of CREB-CRTC in Skeletal Muscle: Advantages and Obstacles for Type 2 Diabetes and Cancer Cachexia.Front Endocrinol (Lausanne). 2019 Aug 2;10:535. doi: 10.3389/fendo.2019.00535. eCollection 2019.
4 Cardiac overexpression of melusin protects from dilated cardiomyopathy due to long-standing pressure overload.Circ Res. 2005 May 27;96(10):1087-94. doi: 10.1161/01.RES.0000168028.36081.e0. Epub 2005 Apr 28.
5 Transcriptional abnormalities of hamstring muscle contractures in children with cerebral palsy.PLoS One. 2012;7(8):e40686. doi: 10.1371/journal.pone.0040686. Epub 2012 Aug 16.
6 Drosophila indirect flight muscle specific Act88F actin mutants as a model system for studying congenital myopathies of the human ACTA1 skeletal muscle actin gene.Neuromuscul Disord. 2010 Jun;20(6):363-74. doi: 10.1016/j.nmd.2010.03.008. Epub 2010 May 7.
7 Gene therapy in Duchenne muscular dystrophy.Brain Dev. 1996 Sep-Oct;18(5):357-61. doi: 10.1016/0387-7604(96)00043-5.
8 Alteration of expression of muscle specific isoforms of the fragile X related protein 1 (FXR1P) in facioscapulohumeral muscular dystrophy patients.J Med Genet. 2008 Oct;45(10):679-85. doi: 10.1136/jmg.2008.060541. Epub 2008 Jul 15.
9 Systematically profiling the expression of eIF3 subunits in glioma reveals the expression of eIF3i has prognostic value in IDH-mutant lower grade glioma.Cancer Cell Int. 2019 Jun 4;19:155. doi: 10.1186/s12935-019-0867-1. eCollection 2019.
10 Generation of a tumor- and tissue-specific episomal non-viral vector system.BMC Biotechnol. 2013 Jun 4;13:49. doi: 10.1186/1472-6750-13-49.
11 Thigh Muscle Specific-Strength and the Risk of Incident Knee Osteoarthritis: The Influence of Sex and Greater Body Mass Index.Arthritis Care Res (Hoboken). 2017 Aug;69(8):1266-1270. doi: 10.1002/acr.23182.
12 Lamin A N-terminal phosphorylation is associated with myoblast activation: impairment in Emery-Dreifuss muscular dystrophy.J Med Genet. 2005 Mar;42(3):214-20. doi: 10.1136/jmg.2004.026112.
13 Exclusion of defects in the skeletal muscle specific regions of the DHPR alpha 1 subunit as frequent causes of malignant hyperthermia.J Med Genet. 1995 Nov;32(11):913-4. doi: 10.1136/jmg.32.11.913.
14 Muscle specific kinase protects dystrophic mdx mouse muscles from eccentric contraction-induced loss of force-producing capacity.J Physiol. 2019 Sep;597(18):4831-4850. doi: 10.1113/JP277839. Epub 2019 Aug 18.
15 Neuromyelitis optica spectrum disorder presenting with concurrent autoimmune diseases.Mult Scler Relat Disord. 2019 Feb;28:125-128. doi: 10.1016/j.msard.2018.12.028. Epub 2018 Dec 20.
16 Bone and muscle specific circulating microRNAs in postmenopausal women based on osteoporosis and sarcopenia status.Bone. 2019 Mar;120:271-278. doi: 10.1016/j.bone.2018.11.001. Epub 2018 Nov 5.
17 Transient neonatal myasthenia gravis due to a mother with ocular onset of anti-muscle specific kinase myasthenia gravis.Neuromuscul Disord. 2017 Jul;27(7):655-657. doi: 10.1016/j.nmd.2017.03.012. Epub 2017 Apr 4.
18 Role of microRNAs in skeletal muscle development and rhabdomyosarcoma (review).Mol Med Rep. 2015 Jun;11(6):4019-24. doi: 10.3892/mmr.2015.3275. Epub 2015 Jan 29.
19 Novel insights into SMALED2: BICD2 mutations increase microtubule stability and cause defects in axonal and NMJ development.Hum Mol Genet. 2018 May 15;27(10):1772-1784. doi: 10.1093/hmg/ddy086.
20 Sustained alpha-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D.Ann Neurol. 2010 Nov;68(5):629-38. doi: 10.1002/ana.22251.
21 Limb-girdle congenital myasthenic syndrome in a Chinese family with novel mutations in MUSK gene and literature review.Clin Neurol Neurosurg. 2016 Nov;150:41-45. doi: 10.1016/j.clineuro.2016.08.021. Epub 2016 Aug 22.
22 Heat therapy improves soleus muscle force in a model of ischemia-induced muscle damage.J Appl Physiol (1985). 2019 Jul 1;127(1):215-228. doi: 10.1152/japplphysiol.00115.2019. Epub 2019 May 30.
23 Muscle specific kinase (MuSK) activation preserves neuromuscular junctions in the diaphragm but is not sufficient to provide a functional benefit in the SOD1(G93A) mouse model of ALS.Neurobiol Dis. 2019 Apr;124:340-352. doi: 10.1016/j.nbd.2018.12.002. Epub 2018 Dec 4.
24 Round cell tumours of bone.Pathol Res Pract. 1993 Dec;189(10):111-36.
25 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
26 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
27 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
28 Proteomics analysis of the proliferative effect of low-dose ouabain on human endothelial cells. Biol Pharm Bull. 2007 Feb;30(2):247-53. doi: 10.1248/bpb.30.247.
29 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
30 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
31 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
32 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
33 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
34 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
35 Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genomics. 2006 Sep 29;7:246. doi: 10.1186/1471-2164-7-246.