General Information of Drug Off-Target (DOT) (ID: OTI0DU9Y)

DOT Name Proprotein convertase subtilisin/kexin type 9 (PCSK9)
Synonyms EC 3.4.21.-; Neural apoptosis-regulated convertase 1; NARC-1; Proprotein convertase 9; PC9; Subtilisin/kexin-like protease PC9
Gene Name PCSK9
Related Disease
Hypercholesterolemia, autosomal dominant, 3 ( )
Homozygous familial hypercholesterolemia ( )
UniProt ID
PCSK9_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2P4E ; 2PMW ; 2QTW ; 2W2M ; 2W2N ; 2W2O ; 2W2P ; 2W2Q ; 2XTJ ; 3BPS ; 3GCW ; 3GCX ; 3H42 ; 3M0C ; 3P5B ; 3P5C ; 3SQO ; 4K8R ; 4NE9 ; 4NMX ; 4OV6 ; 5OCA ; 5VL7 ; 5VLA ; 5VLH ; 5VLK ; 5VLL ; 5VLP ; 6E4Y ; 6E4Z ; 6MV5 ; 6OLZ ; 6OM0 ; 6OM7 ; 6U26 ; 6U2F ; 6U2N ; 6U2P ; 6U36 ; 6U38 ; 6U3I ; 6U3X ; 7ANQ
EC Number
3.4.21.-
Pfam ID
PF05922 ; PF18459 ; PF18464 ; PF18463 ; PF00082
Sequence
MGTVSSRRSWWPLPLLLLLLLLLGPAGARAQEDEDGDYEELVLALRSEEDGLAEAPEHGT
TATFHRCAKDPWRLPGTYVVVLKEETHLSQSERTARRLQAQAARRGYLTKILHVFHGLLP
GFLVKMSGDLLELALKLPHVDYIEEDSSVFAQSIPWNLERITPPRYRADEYQPPDGGSLV
EVYLLDTSIQSDHREIEGRVMVTDFENVPEEDGTRFHRQASKCDSHGTHLAGVVSGRDAG
VAKGASMRSLRVLNCQGKGTVSGTLIGLEFIRKSQLVQPVGPLVVLLPLAGGYSRVLNAA
CQRLARAGVVLVTAAGNFRDDACLYSPASAPEVITVGATNAQDQPVTLGTLGTNFGRCVD
LFAPGEDIIGASSDCSTCFVSQSGTSQAAAHVAGIAAMMLSAEPELTLAELRQRLIHFSA
KDVINEAWFPEDQRVLTPNLVAALPPSTHGAGWQLFCRTVWSAHSGPTRMATAVARCAPD
EELLSCSSFSRSGKRRGERMEAQGGKLVCRAHNAFGGEGVYAIARCCLLPQANCSVHTAP
PAEASMGTRVHCHQQGHVLTGCSSHWEVEDLGTHKPPVLRPRGQPNQCVGHREASIHASC
CHAPGLECKVKEHGIPAPQEQVTVACEEGWTLTGCSALPGTSHVLGAYAVDNTCVVRSRD
VSTTGSTSEGAVTAVAICCRSRHLAQASQELQ
Function
Crucial player in the regulation of plasma cholesterol homeostasis. Binds to low-density lipid receptor family members: low density lipoprotein receptor (LDLR), very low density lipoprotein receptor (VLDLR), apolipoprotein E receptor (LRP1/APOER) and apolipoprotein receptor 2 (LRP8/APOER2), and promotes their degradation in intracellular acidic compartments. Acts via a non-proteolytic mechanism to enhance the degradation of the hepatic LDLR through a clathrin LDLRAP1/ARH-mediated pathway. May prevent the recycling of LDLR from endosomes to the cell surface or direct it to lysosomes for degradation. Can induce ubiquitination of LDLR leading to its subsequent degradation. Inhibits intracellular degradation of APOB via the autophagosome/lysosome pathway in a LDLR-independent manner. Involved in the disposal of non-acetylated intermediates of BACE1 in the early secretory pathway. Inhibits epithelial Na(+) channel (ENaC)-mediated Na(+) absorption by reducing ENaC surface expression primarily by increasing its proteasomal degradation. Regulates neuronal apoptosis via modulation of LRP8/APOER2 levels and related anti-apoptotic signaling pathways.
Tissue Specificity Expressed in neuro-epithelioma, colon carcinoma, hepatic and pancreatic cell lines, and in Schwann cells.
KEGG Pathway
Cholesterol metabolism (hsa04979 )
Reactome Pathway
VLDLR internalisation and degradation (R-HSA-8866427 )
Post-translational protein phosphorylation (R-HSA-8957275 )
LDL clearance (R-HSA-8964038 )
Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs) (R-HSA-381426 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hypercholesterolemia, autosomal dominant, 3 DIS8KE3U Definitive Autosomal dominant [1]
Homozygous familial hypercholesterolemia DISRCNCF Supportive Autosomal recessive [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
27 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [3]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [6]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [4]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [7]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [8]
Carbamazepine DMZOLBI Approved Carbamazepine decreases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [9]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [10]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [11]
Gemcitabine DMSE3I7 Approved Gemcitabine increases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [12]
Fenofibrate DMFKXDY Approved Fenofibrate increases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [13]
Pioglitazone DMKJ485 Approved Pioglitazone increases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [14]
Vitamin C DMXJ7O8 Approved Vitamin C decreases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [15]
Bezafibrate DMZDCS0 Approved Bezafibrate increases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [13]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [16]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate increases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [17]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [18]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [19]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [22]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [24]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [25]
PP-242 DM2348V Investigative PP-242 decreases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [26]
U0126 DM31OGF Investigative U0126 increases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [14]
PD98059 DMZC90M Investigative PD98059 increases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [14]
15-deoxy-Delta(12, 14)-prostaglandin J(2) DM8VUX3 Investigative 15-deoxy-Delta(12, 14)-prostaglandin J(2) increases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [14]
Ganoderic acid A DM42EVG Investigative Ganoderic acid A decreases the expression of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [27]
------------------------------------------------------------------------------------
⏷ Show the Full List of 27 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [20]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [21]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Proprotein convertase subtilisin/kexin type 9 (PCSK9). [23]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Familial Hypercholesterolemia. 2014 Jan 2 [updated 2022 Jul 7]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
3 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
4 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
5 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
9 Phospholipidosis induced by PPARgama signaling in human bronchial epithelial (BEAS-2B) cells exposed to amiodarone. Toxicol Sci. 2011 Mar;120(1):98-108.
10 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
11 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
12 Gene expression profiling of breast cancer cells in response to gemcitabine: NF-kappaB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat. 2007 Apr;102(2):157-72.
13 Comparison of effects of bezafibrate and fenofibrate on circulating proprotein convertase subtilisin/kexin type 9 and adipocytokine levels in dyslipidemic subjects with impaired glucose tolerance or type 2 diabetes mellitus: results from a crossover study. Atherosclerosis. 2011 Jul;217(1):165-70. doi: 10.1016/j.atherosclerosis.2011.02.012. Epub 2011 Feb 22.
14 Peroxisome Proliferator-activated receptor activation by ligands and dephosphorylation induces proprotein convertase subtilisin kexin type 9 and low density lipoprotein receptor expression. J Biol Chem. 2012 Jul 6;287(28):23667-77. doi: 10.1074/jbc.M112.350181. Epub 2012 May 16.
15 Ascorbic acid enhances low-density lipoprotein receptor expression by suppressing proprotein convertase subtilisin/kexin 9 expression. J Biol Chem. 2020 Nov 20;295(47):15870-15882. doi: 10.1074/jbc.RA120.015623. Epub 2020 Sep 10.
16 Resveratrol increases the expression and activity of the low density lipoprotein receptor in hepatocytes by the proteolytic activation of the sterol regulatory element-binding proteins. Atherosclerosis. 2012 Feb;220(2):369-74. doi: 10.1016/j.atherosclerosis.2011.11.006. Epub 2011 Nov 16.
17 Integrated transcriptomic and metabolomic analyses to characterize the anti-cancer effects of (-)-epigallocatechin-3-gallate in human colon cancer cells. Toxicol Appl Pharmacol. 2020 Aug 15;401:115100. doi: 10.1016/j.taap.2020.115100. Epub 2020 Jun 6.
18 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
19 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
20 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
21 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
22 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
23 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
24 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
25 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
26 Marine biogenics in sea spray aerosols interact with the mTOR signaling pathway. Sci Rep. 2019 Jan 24;9(1):675.
27 Ganoderic Acid A improves high fat diet-induced obesity, lipid accumulation and insulin sensitivity through regulating SREBP pathway. Chem Biol Interact. 2018 Jun 25;290:77-87.