General Information of Drug Off-Target (DOT) (ID: OTIRBYVK)

DOT Name Differentially expressed in FDCP 6 homolog (DEF6)
Synonyms DEF-6; IRF4-binding protein
Gene Name DEF6
Related Disease
Rheumatoid arthritis ( )
Acute gouty arthritis ( )
Autoimmune disease ( )
Clear cell renal carcinoma ( )
Immunodeficiency ( )
Immunodeficiency 87 and autoimmunity ( )
Renal cell carcinoma ( )
Systemic lupus erythematosus ( )
Advanced cancer ( )
Lung cancer ( )
Lung carcinoma ( )
Breast cancer ( )
Breast carcinoma ( )
Metastatic malignant neoplasm ( )
UniProt ID
DEFI6_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00169
Sequence
MALRKELLKSIWYAFTALDVEKSGKVSKSQLKVLSHNLYTVLHIPHDPVALEEHFRDDDD
GPVSSQGYMPYLNKYILDKVEEGAFVKEHFDELCWTLTAKKNYRADSNGNSMLSNQDAFR
LWCLFNFLSEDKYPLIMVPDEVEYLLKKVLSSMSLEVSLGELEELLAQEAQVAQTTGGLS
VWQFLELFNSGRCLRGVGRDTLSMAIHEVYQELIQDVLKQGYLWKRGHLRRNWAERWFQL
QPSCLCYFGSEECKEKRGIIPLDAHCCVEVLPDRDGKRCMFCVKTANRTYEMSASDTRQR
QEWTAAIQMAIRLQAEGKTSLHKDLKQKRREQREQRERRRAAKEEELLRLQQLQEEKERK
LQELELLQEAQRQAERLLQEEEERRRSQHRELQQALEGQLREAEQARASMQAEMELKEEE
AARQRQRIKELEEMQQRLQEALQLEVKARRDEESVRIAQTRLLEEEEEKLKQLMQLKEEQ
ERYIERAQQEKEELQQEMAQQSRSLQQAQQQLEEVRQNRQRADEDVEAAQRKLRQASTNV
KHWNVQMNRLMHPIEPGDKRPVTSSSFSGFQPPLLAHRDSSLKRLTRWGSQGNRTPSPNS
NEQQKSLNGGDEAPAPASTPQEDKLDPAPEN
Function
Phosphatidylinositol 3,4,5-trisphosphate-dependent guanine nucleotide exchange factor (GEF) which plays a role in the activation of Rho GTPases RAC1, RhoA and CDC42. Can regulate cell morphology in cooperation with activated RAC1. Involved in immune homeostasis by ensuring proper trafficking and availability of T-cell regulator CTLA-4 at T-cell surface. Plays a role in Th2 (T helper cells) development and/or activation, perhaps by interfering with ZAP70 signaling.
Tissue Specificity Broadly expressed in the immune system. Highly expressed in T cells .
Reactome Pathway
CDC42 GTPase cycle (R-HSA-9013148 )
RAC1 GTPase cycle (R-HSA-9013149 )
RAC2 GTPase cycle (R-HSA-9013404 )
RHOA GTPase cycle (R-HSA-8980692 )

Molecular Interaction Atlas (MIA) of This DOT

14 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Rheumatoid arthritis DISTSB4J Definitive Altered Expression [1]
Acute gouty arthritis DISY5UJH Strong Biomarker [2]
Autoimmune disease DISORMTM Strong Biomarker [3]
Clear cell renal carcinoma DISBXRFJ Strong Altered Expression [4]
Immunodeficiency DIS093I0 Strong Biomarker [3]
Immunodeficiency 87 and autoimmunity DISPKQV6 Strong Autosomal recessive [5]
Renal cell carcinoma DISQZ2X8 Strong Altered Expression [4]
Systemic lupus erythematosus DISI1SZ7 Strong Genetic Variation [6]
Advanced cancer DISAT1Z9 moderate Genetic Variation [7]
Lung cancer DISCM4YA moderate Genetic Variation [7]
Lung carcinoma DISTR26C moderate Genetic Variation [7]
Breast cancer DIS7DPX1 Limited Altered Expression [8]
Breast carcinoma DIS2UE88 Limited Altered Expression [8]
Metastatic malignant neoplasm DIS86UK6 Limited Altered Expression [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Temozolomide DMKECZD Approved Differentially expressed in FDCP 6 homolog (DEF6) affects the response to substance of Temozolomide. [22]
DTI-015 DMXZRW0 Approved Differentially expressed in FDCP 6 homolog (DEF6) affects the response to substance of DTI-015. [22]
------------------------------------------------------------------------------------
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Differentially expressed in FDCP 6 homolog (DEF6). [9]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Differentially expressed in FDCP 6 homolog (DEF6). [10]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Differentially expressed in FDCP 6 homolog (DEF6). [11]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Differentially expressed in FDCP 6 homolog (DEF6). [12]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Differentially expressed in FDCP 6 homolog (DEF6). [14]
Bortezomib DMNO38U Approved Bortezomib decreases the expression of Differentially expressed in FDCP 6 homolog (DEF6). [15]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Differentially expressed in FDCP 6 homolog (DEF6). [16]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Differentially expressed in FDCP 6 homolog (DEF6). [18]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Differentially expressed in FDCP 6 homolog (DEF6). [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Differentially expressed in FDCP 6 homolog (DEF6). [13]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Differentially expressed in FDCP 6 homolog (DEF6). [17]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Differentially expressed in FDCP 6 homolog (DEF6). [20]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Puromycin DMDKLB5 Preclinical Puromycin affects the localization of Differentially expressed in FDCP 6 homolog (DEF6). [19]
------------------------------------------------------------------------------------

References

1 Def6 Restrains Osteoclastogenesis and Inflammatory Bone Resorption.J Immunol. 2017 May 1;198(9):3436-3447. doi: 10.4049/jimmunol.1601716. Epub 2017 Mar 17.
2 Factors associated with the decision of the rheumatologist to order sacroiliac joints magnetic resonance imaging (SI-MRI) or HLA-B27 testing in the diagnostic work-up of patients with spondyloarthritis in clinical practice.Clin Exp Rheumatol. 2017 Jan-Feb;35(1):122-128. Epub 2016 Oct 26.
3 Publisher Correction: Human DEF6 deficiency underlies an immunodeficiency syndrome with systemic autoimmunity and aberrant CTLA-4 homeostasis.Nat Commun. 2019 Oct 2;10(1):4555. doi: 10.1038/s41467-019-12454-5.
4 Identification of novel targets for antiangiogenic therapy by comparing the gene expressions of tumor and normal endothelial cells.Cancer Sci. 2014 May;105(5):560-7. doi: 10.1111/cas.12394. Epub 2014 Apr 19.
5 Loss of IRF-4-binding protein leads to the spontaneous development of systemic autoimmunity. J Clin Invest. 2006 Mar;116(3):703-14. doi: 10.1172/JCI24096. Epub 2006 Feb 9.
6 Regulation of age-associated B cells by IRF5 in systemic autoimmunity.Nat Immunol. 2018 Apr;19(4):407-419. doi: 10.1038/s41590-018-0056-8. Epub 2018 Feb 26.
7 META-GSA: Combining Findings from Gene-Set Analyses across Several Genome-Wide Association Studies.PLoS One. 2015 Oct 26;10(10):e0140179. doi: 10.1371/journal.pone.0140179. eCollection 2015.
8 IBP regulates epithelial-to-mesenchymal transition and the motility of breast cancer cells via Rac1, RhoA and Cdc42 signaling pathways.Oncogene. 2014 Jun 26;33(26):3374-82. doi: 10.1038/onc.2013.337. Epub 2013 Aug 26.
9 Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxicol. 2014 Mar 17;27(3):408-20.
10 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
11 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
12 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
13 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
14 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
15 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
16 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
17 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
18 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
19 DEF6, a novel substrate for the Tec kinase ITK, contains a glutamine-rich aggregation-prone region and forms cytoplasmic granules that co-localize with P-bodies. J Biol Chem. 2012 Sep 7;287(37):31073-84. doi: 10.1074/jbc.M112.346767. Epub 2012 Jul 24.
20 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
21 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
22 Tumor necrosis factor-alpha-induced protein 3 as a putative regulator of nuclear factor-kappaB-mediated resistance to O6-alkylating agents in human glioblastomas. J Clin Oncol. 2006 Jan 10;24(2):274-87. doi: 10.1200/JCO.2005.02.9405. Epub 2005 Dec 19.