General Information of Drug Off-Target (DOT) (ID: OTL86FEQ)

DOT Name Rho GTPase-activating protein 45 (ARHGAP45)
Gene Name ARHGAP45
Related Disease
Acute graft versus host disease ( )
Advanced cancer ( )
Benign neoplasm ( )
Graft-versus-host disease ( )
Influenza ( )
Neoplasm ( )
Pre-eclampsia ( )
Chronic graft versus host disease ( )
Sjogren syndrome ( )
Melanoma ( )
UniProt ID
HMHA1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3D25; 3FT3
Pfam ID
PF00620
Sequence
MFSRKKRELMKTPSISKKNRAGSPSPQPSGELPRKDGADAVFPGPSLEPPAGSSGVKATG
TLKRPTSLSRHASAAGFPLSGAASWTLGRSHRSPLTAASPGELPTEGAGPDVVEDISHLL
ADVARFAEGLEKLKECVLRDDLLEARRPRAHECLGEALRVMHQIISKYPLLNTVETLTAA
GTLIAKVKAFHYESNNDLEKQEFEKALETIAVAFSSTVSEFLMGEVDSSTLLAVPPGDSS
QSMESLYGPGSEGTPPSLEDCDAGCLPAEEVDVLLQRCEGGVDAALLYAKNMAKYMKDLI
SYLEKRTTLEMEFAKGLQKIAHNCRQSVMQEPHMPLLSIYSLALEQDLEFGHSMVQAVGT
LQTQTFMQPLTLRRLEHEKRRKEIKEAWHRAQRKLQEAESNLRKAKQGYVQRCEDHDKAR
FLVAKAEEEQAGSAPGAGSTATKTLDKRRRLEEEAKNKAEEAMATYRTCVADAKTQKQEL
EDTKVTALRQIQEVIRQSDQTIKSATISYYQMMHMQTAPLPVHFQMLCESSKLYDPGQQY
ASHVRQLQRDQEPDVHYDFEPHVSANAWSPVMRARKSSFNVSDVARPEAAGSPPEEGGCT
EGTPAKDHRAGRGHQVHKSWPLSISDSDSGLDPGPGAGDFKKFERTSSSGTMSSTEELVD
PDGGAGASAFEQADLNGMTPELPVAVPSGPFRHEGLSKAARTHRLRKLRTPAKCRECNSY
VYFQGAECEECCLACHKKCLETLAIQCGHKKLQGRLQLFGQDFSHAARSAPDGVPFIVKK
CVCEIERRALRTKGIYRVNGVKTRVEKLCQAFENGKELVELSQASPHDISNVLKLYLRQL
PEPLISFRLYHELVGLAKDSLKAEAEAKAASRGRQDGSESEAVAVALAGRLRELLRDLPP
ENRASLQYLLRHLRRIVEVEQDNKMTPGNLGIVFGPTLLRPRPTEATVSLSSLVDYPHQA
RVIETLIVHYGLVFEEEPEETPGGQDESSNQRAEVVVQVPYLEAGEAVVYPLQEAAADGC
RESRVVSNDSDSDLEEASELLSSSEASALGHLSFLEQQQSEASLEVASGSHSGSEEQLEA
TAREDGDGDEDGPAQQLSGFNTNQSNNVLQAPLPPMRLRGGRMTLGSCRERQPEFV
Function
Contains a GTPase activator for the Rho-type GTPases (RhoGAP) domain that would be able to negatively regulate the actin cytoskeleton as well as cell spreading. However, also contains N-terminally a BAR-domin which is able to play an autoinhibitory effect on this RhoGAP activity; Precursor of the histocompatibility antigen HA-1. More generally, minor histocompatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and its expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocompatibility antigen in HLA-matched sibling marrow transplants. Specifically, mismatching for mHag HA-1 which is recognized as immunodominant, is shown to be associated with the development of severe GVHD after HLA-identical BMT. HA-1 is presented to the cell surface by MHC class I HLA-A*0201, but also by other HLA-A alleles. This complex specifically elicits donor-cytotoxic T-lymphocyte (CTL) reactivity against hematologic malignancies after treatment by HLA-identical allogenic BMT. It induces cell recognition and lysis by CTL.
Tissue Specificity
Expressed on cells of the hematopoietic lineage. Detected in dendritic cells and epidermal Langerhans cells. Expressed in peripheral blood mononuclear cells, in all leukemia/lymphoma cell lines. Detected also in some solid tumors and tissues such as cancerous and non-cancerous tissue.
Reactome Pathway
RHOA GTPase cycle (R-HSA-8980692 )
CDC42 GTPase cycle (R-HSA-9013148 )
RAC1 GTPase cycle (R-HSA-9013149 )
Neutrophil degranulation (R-HSA-6798695 )

Molecular Interaction Atlas (MIA) of This DOT

10 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Acute graft versus host disease DIS8KLVM Strong Biomarker [1]
Advanced cancer DISAT1Z9 Strong Biomarker [2]
Benign neoplasm DISDUXAD Strong Biomarker [2]
Graft-versus-host disease DIS0QADF Strong Biomarker [3]
Influenza DIS3PNU3 Strong Genetic Variation [4]
Neoplasm DISZKGEW Strong Biomarker [2]
Pre-eclampsia DISY7Q29 Strong Biomarker [5]
Chronic graft versus host disease DIS1MM9J moderate Biomarker [3]
Sjogren syndrome DISUBX7H Disputed Genetic Variation [6]
Melanoma DIS1RRCY Limited Biomarker [7]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
6 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Rho GTPase-activating protein 45 (ARHGAP45). [8]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Rho GTPase-activating protein 45 (ARHGAP45). [10]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Rho GTPase-activating protein 45 (ARHGAP45). [18]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Rho GTPase-activating protein 45 (ARHGAP45). [20]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Rho GTPase-activating protein 45 (ARHGAP45). [21]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of Rho GTPase-activating protein 45 (ARHGAP45). [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin increases the expression of Rho GTPase-activating protein 45 (ARHGAP45). [9]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Rho GTPase-activating protein 45 (ARHGAP45). [11]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Rho GTPase-activating protein 45 (ARHGAP45). [12]
Decitabine DMQL8XJ Approved Decitabine increases the expression of Rho GTPase-activating protein 45 (ARHGAP45). [2]
Ofloxacin DM0VQN3 Approved Ofloxacin affects the expression of Rho GTPase-activating protein 45 (ARHGAP45). [14]
Acetazolamide DM1AF5U Approved Acetazolamide affects the expression of Rho GTPase-activating protein 45 (ARHGAP45). [14]
Indapamide DMGN1PW Approved Indapamide affects the expression of Rho GTPase-activating protein 45 (ARHGAP45). [14]
Brinzolamide DMBAPFG Approved Brinzolamide affects the expression of Rho GTPase-activating protein 45 (ARHGAP45). [14]
Cefepime DMHVWIK Approved Cefepime affects the expression of Rho GTPase-activating protein 45 (ARHGAP45). [14]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Rho GTPase-activating protein 45 (ARHGAP45). [15]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Rho GTPase-activating protein 45 (ARHGAP45). [16]
Tamibarotene DM3G74J Phase 3 Tamibarotene increases the expression of Rho GTPase-activating protein 45 (ARHGAP45). [9]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of Rho GTPase-activating protein 45 (ARHGAP45). [17]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Rho GTPase-activating protein 45 (ARHGAP45). [19]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Rho GTPase-activating protein 45 (ARHGAP45). [2]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)

References

1 Correlation between disparity for the minor histocompatibility antigen HA-1 and the development of acute graft-versus-host disease after allogeneic marrow transplantation.Blood. 1999 Oct 15;94(8):2911-4.
2 Hypomethylating drugs convert HA-1-negative solid tumors into targets for stem cell-based immunotherapy. Blood. 2009 Mar 19;113(12):2715-22. doi: 10.1182/blood-2008-05-158956. Epub 2008 Dec 18.
3 Does minor histocompatibility antigen HA-1 disparity affect the occurrence of graft-versus-host disease in tunisian recipients of hematopoietic stem cells?.Clinics (Sao Paulo). 2010;65(11):1099-103. doi: 10.1590/s1807-59322010001100007.
4 Direct sequence determination of the influenza B HA-1 gene after PCR amplification of clinical specimens from an infected volunteer.J Virol Methods. 1993 Sep;44(1):35-44. doi: 10.1016/0166-0934(93)90005-c.
5 Trophoblast expression of the minor histocompatibility antigen HA-1 is regulated by oxygen and is increased in placentas from preeclamptic women.Placenta. 2015 Aug;36(8):832-8. doi: 10.1016/j.placenta.2015.05.018. Epub 2015 Jun 6.
6 Homozygosity for the 168His variant of the minor histocompatibility antigen HA-1 is associated with reduced risk of primary Sjgren's syndrome.Eur J Immunol. 2005 Jan;35(1):305-17. doi: 10.1002/eji.200425406.
7 Multiple pro-tumorigenic functions of the human minor Histocompatibility Antigen-1 (HA-1) in melanoma progression.J Dermatol Sci. 2017 Nov;88(2):216-224. doi: 10.1016/j.jdermsci.2017.07.004. Epub 2017 Jul 8.
8 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
9 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
10 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
11 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
12 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
13 Hypomethylating drugs convert HA-1-negative solid tumors into targets for stem cell-based immunotherapy. Blood. 2009 Mar 19;113(12):2715-22. doi: 10.1182/blood-2008-05-158956. Epub 2008 Dec 18.
14 Systems pharmacological analysis of drugs inducing stevens-johnson syndrome and toxic epidermal necrolysis. Chem Res Toxicol. 2015 May 18;28(5):927-34. doi: 10.1021/tx5005248. Epub 2015 Apr 3.
15 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
16 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
17 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
18 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
19 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
20 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
21 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.