General Information of Drug Off-Target (DOT) (ID: OTLS2RJ4)

DOT Name Slit homolog 2 protein (SLIT2)
Synonyms Slit-2
Gene Name SLIT2
UniProt ID
SLIT2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2V70; 2V9S; 2V9T; 2WFH
Pfam ID
PF00008 ; PF12661 ; PF00054 ; PF00560 ; PF13855 ; PF01463 ; PF01462
Sequence
MRGVGWQMLSLSLGLVLAILNKVAPQACPAQCSCSGSTVDCHGLALRSVPRNIPRNTERL
DLNGNNITRITKTDFAGLRHLRVLQLMENKISTIERGAFQDLKELERLRLNRNHLQLFPE
LLFLGTAKLYRLDLSENQIQAIPRKAFRGAVDIKNLQLDYNQISCIEDGAFRALRDLEVL
TLNNNNITRLSVASFNHMPKLRTFRLHSNNLYCDCHLAWLSDWLRQRPRVGLYTQCMGPS
HLRGHNVAEVQKREFVCSGHQSFMAPSCSVLHCPAACTCSNNIVDCRGKGLTEIPTNLPE
TITEIRLEQNTIKVIPPGAFSPYKKLRRIDLSNNQISELAPDAFQGLRSLNSLVLYGNKI
TELPKSLFEGLFSLQLLLLNANKINCLRVDAFQDLHNLNLLSLYDNKLQTIAKGTFSPLR
AIQTMHLAQNPFICDCHLKWLADYLHTNPIETSGARCTSPRRLANKRIGQIKSKKFRCSA
KEQYFIPGTEDYRSKLSGDCFADLACPEKCRCEGTTVDCSNQKLNKIPEHIPQYTAELRL
NNNEFTVLEATGIFKKLPQLRKINFSNNKITDIEEGAFEGASGVNEILLTSNRLENVQHK
MFKGLESLKTLMLRSNRITCVGNDSFIGLSSVRLLSLYDNQITTVAPGAFDTLHSLSTLN
LLANPFNCNCYLAWLGEWLRKKRIVTGNPRCQKPYFLKEIPIQDVAIQDFTCDDGNDDNS
CSPLSRCPTECTCLDTVVRCSNKGLKVLPKGIPRDVTELYLDGNQFTLVPKELSNYKHLT
LIDLSNNRISTLSNQSFSNMTQLLTLILSYNRLRCIPPRTFDGLKSLRLLSLHGNDISVV
PEGAFNDLSALSHLAIGANPLYCDCNMQWLSDWVKSEYKEPGIARCAGPGEMADKLLLTT
PSKKFTCQGPVDVNILAKCNPCLSNPCKNDGTCNSDPVDFYRCTCPYGFKGQDCDVPIHA
CISNPCKHGGTCHLKEGEEDGFWCICADGFEGENCEVNVDDCEDNDCENNSTCVDGINNY
TCLCPPEYTGELCEEKLDFCAQDLNPCQHDSKCILTPKGFKCDCTPGYVGEHCDIDFDDC
QDNKCKNGAHCTDAVNGYTCICPEGYSGLFCEFSPPMVLPRTSPCDNFDCQNGAQCIVRI
NEPICQCLPGYQGEKCEKLVSVNFINKESYLQIPSAKVRPQTNITLQIATDEDSGILLYK
GDKDHIAVELYRGRVRASYDTGSHPASAIYSVETINDGNFHIVELLALDQSLSLSVDGGN
PKIITNLSKQSTLNFDSPLYVGGMPGKSNVASLRQAPGQNGTSFHGCIRNLYINSELQDF
QKVPMQTGILPGCEPCHKKVCAHGTCQPSSQAGFTCECQEGWMGPLCDQRTNDPCLGNKC
VHGTCLPINAFSYSCKCLEGHGGVLCDEEEDLFNPCQAIKCKHGKCRLSGLGQPYCECSS
GYTGDSCDREISCRGERIRDYYQKQQGYAACQTTKKVSRLECRGGCAGGQCCGPLRSKRR
KYSFECTDGSSFVDEVEKVVKCGCTRCVS
Function
Thought to act as molecular guidance cue in cellular migration, and function appears to be mediated by interaction with roundabout homolog receptors. During neural development involved in axonal navigation at the ventral midline of the neural tube and projection of axons to different regions. SLIT1 and SLIT2 seem to be essential for midline guidance in the forebrain by acting as repulsive signal preventing inappropriate midline crossing by axons projecting from the olfactory bulb. In spinal cord development may play a role in guiding commissural axons once they reached the floor plate by modulating the response to netrin. In vitro, silences the attractive effect of NTN1 but not its growth-stimulatory effect and silencing requires the formation of a ROBO1-DCC complex. May be implicated in spinal cord midline post-crossing axon repulsion. In vitro, only commissural axons that crossed the midline responded to SLIT2. In the developing visual system appears to function as repellent for retinal ganglion axons by providing a repulsion that directs these axons along their appropriate paths prior to, and after passage through, the optic chiasm. In vitro, collapses and repels retinal ganglion cell growth cones. Seems to play a role in branching and arborization of CNS sensory axons, and in neuronal cell migration. In vitro, Slit homolog 2 protein N-product, but not Slit homolog 2 protein C-product, repels olfactory bulb (OB) but not dorsal root ganglia (DRG) axons, induces OB growth cones collapse and induces branching of DRG axons. Seems to be involved in regulating leukocyte migration.
Tissue Specificity Fetal lung and kidney, and adult spinal cord. Weak expression in adult adrenal gland, thyroid, trachea and other tissues examined.
KEGG Pathway
Axon guidance (hsa04360 )
Reactome Pathway
Signaling by ROBO receptors (R-HSA-376176 )
Activation of RAC1 (R-HSA-428540 )
Regulation of commissural axon pathfinding by SLIT and ROBO (R-HSA-428542 )
Inactivation of CDC42 and RAC1 (R-HSA-428543 )
Role of ABL in ROBO-SLIT signaling (R-HSA-428890 )
SLIT2 (R-HSA-8985586 )
Regulation of expression of SLITs and ROBOs (R-HSA-9010553 )
Netrin-1 signaling (R-HSA-373752 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
NAPQI DM8F5LR Investigative Slit homolog 2 protein (SLIT2) affects the response to substance of NAPQI. [27]
------------------------------------------------------------------------------------
27 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Slit homolog 2 protein (SLIT2). [1]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Slit homolog 2 protein (SLIT2). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Slit homolog 2 protein (SLIT2). [3]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Slit homolog 2 protein (SLIT2). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Slit homolog 2 protein (SLIT2). [5]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Slit homolog 2 protein (SLIT2). [6]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Slit homolog 2 protein (SLIT2). [7]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Slit homolog 2 protein (SLIT2). [8]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Slit homolog 2 protein (SLIT2). [9]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Slit homolog 2 protein (SLIT2). [10]
Decitabine DMQL8XJ Approved Decitabine increases the expression of Slit homolog 2 protein (SLIT2). [11]
Selenium DM25CGV Approved Selenium decreases the expression of Slit homolog 2 protein (SLIT2). [12]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Slit homolog 2 protein (SLIT2). [8]
Dexamethasone DMMWZET Approved Dexamethasone decreases the expression of Slit homolog 2 protein (SLIT2). [14]
Folic acid DMEMBJC Approved Folic acid decreases the expression of Slit homolog 2 protein (SLIT2). [15]
Cytarabine DMZD5QR Approved Cytarabine decreases the expression of Slit homolog 2 protein (SLIT2). [16]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Slit homolog 2 protein (SLIT2). [17]
Belinostat DM6OC53 Phase 2 Belinostat increases the expression of Slit homolog 2 protein (SLIT2). [8]
PD-0325901 DM27D4J Phase 2 PD-0325901 decreases the expression of Slit homolog 2 protein (SLIT2). [18]
OTX-015 DMI8RG1 Phase 1/2 OTX-015 increases the expression of Slit homolog 2 protein (SLIT2). [19]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Slit homolog 2 protein (SLIT2). [21]
Mivebresib DMCPF90 Phase 1 Mivebresib increases the expression of Slit homolog 2 protein (SLIT2). [19]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Slit homolog 2 protein (SLIT2). [22]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Slit homolog 2 protein (SLIT2). [23]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Slit homolog 2 protein (SLIT2). [24]
Deguelin DMXT7WG Investigative Deguelin decreases the expression of Slit homolog 2 protein (SLIT2). [25]
Nitrobenzanthrone DMN6L70 Investigative Nitrobenzanthrone increases the expression of Slit homolog 2 protein (SLIT2). [26]
------------------------------------------------------------------------------------
⏷ Show the Full List of 27 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Fulvestrant DM0YZC6 Approved Fulvestrant increases the methylation of Slit homolog 2 protein (SLIT2). [13]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Slit homolog 2 protein (SLIT2). [20]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
4 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Profile of estrogen-responsive genes in an estrogen-specific mammary gland outgrowth model. Mol Reprod Dev. 2009 Aug;76(8):733-50. doi: 10.1002/mrd.21041.
7 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
8 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
9 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
10 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
11 Epigenetic inactivation of SLIT2 in human hepatocellular carcinomas. Biochem Biophys Res Commun. 2009 Jan 30;379(1):86-91. doi: 10.1016/j.bbrc.2008.12.022. Epub 2008 Dec 17.
12 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
13 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
14 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
15 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
16 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
17 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
18 PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature. 2014 Oct 9;514(7521):247-51.
19 Comprehensive transcriptome profiling of BET inhibitor-treated HepG2 cells. PLoS One. 2022 Apr 29;17(4):e0266966. doi: 10.1371/journal.pone.0266966. eCollection 2022.
20 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
21 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
22 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
23 Expression and DNA methylation changes in human breast epithelial cells after bisphenol A exposure. Int J Oncol. 2012 Jul;41(1):369-77.
24 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
25 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
26 3-Nitrobenzanthrone promotes malignant transformation in human lung epithelial cells through the epiregulin-signaling pathway. Cell Biol Toxicol. 2022 Oct;38(5):865-887. doi: 10.1007/s10565-021-09612-1. Epub 2021 May 25.
27 Acetaminophen-NAPQI hepatotoxicity: a cell line model system genome-wide association study. Toxicol Sci. 2011 Mar;120(1):33-41. doi: 10.1093/toxsci/kfq375. Epub 2010 Dec 22.