General Information of Drug Off-Target (DOT) (ID: OTOIWE5G)

DOT Name cAMP-dependent protein kinase inhibitor gamma (PKIG)
Synonyms PKI-gamma
Gene Name PKIG
Related Disease
Adenosine deaminase defciency ( )
Severe combined immunodeficiency ( )
Ankylosing spondylitis ( )
Crohn disease ( )
Psoriasis ( )
Sclerosing cholangitis ( )
Ulcerative colitis ( )
UniProt ID
IPKG_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF02827
Sequence
MMEVESSYSDFISCDRTGRRNAVPDIQGDSEAVSVRKLAGDMGELALEGAEGQVEGSAPD
KEAGNQPQSSDGTTSS
Function
Extremely potent competitive inhibitor of cAMP-dependent protein kinase activity, this protein interacts with the catalytic subunit of the enzyme after the cAMP-induced dissociation of its regulatory chains.
Tissue Specificity Ubiquitous.

Molecular Interaction Atlas (MIA) of This DOT

7 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Adenosine deaminase defciency DISC2C93 Strong Genetic Variation [1]
Severe combined immunodeficiency DIS6MF4Q Strong CausalMutation [2]
Ankylosing spondylitis DISRC6IR moderate Genetic Variation [3]
Crohn disease DIS2C5Q8 Limited Genetic Variation [3]
Psoriasis DIS59VMN Limited Genetic Variation [3]
Sclerosing cholangitis DIS7GZNB Limited Genetic Variation [3]
Ulcerative colitis DIS8K27O Limited Genetic Variation [3]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved cAMP-dependent protein kinase inhibitor gamma (PKIG) affects the response to substance of Acetaminophen. [16]
------------------------------------------------------------------------------------
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of cAMP-dependent protein kinase inhibitor gamma (PKIG). [4]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of cAMP-dependent protein kinase inhibitor gamma (PKIG). [5]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of cAMP-dependent protein kinase inhibitor gamma (PKIG). [6]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of cAMP-dependent protein kinase inhibitor gamma (PKIG). [7]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of cAMP-dependent protein kinase inhibitor gamma (PKIG). [8]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of cAMP-dependent protein kinase inhibitor gamma (PKIG). [9]
Estradiol DMUNTE3 Approved Estradiol affects the expression of cAMP-dependent protein kinase inhibitor gamma (PKIG). [10]
Decitabine DMQL8XJ Approved Decitabine affects the expression of cAMP-dependent protein kinase inhibitor gamma (PKIG). [11]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of cAMP-dependent protein kinase inhibitor gamma (PKIG). [12]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of cAMP-dependent protein kinase inhibitor gamma (PKIG). [13]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of cAMP-dependent protein kinase inhibitor gamma (PKIG). [14]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of cAMP-dependent protein kinase inhibitor gamma (PKIG). [12]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of cAMP-dependent protein kinase inhibitor gamma (PKIG). [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)

References

1 Clinical, Laboratory, and Molecular Findings for 63 Patients With Severe Combined Immunodeficiency: A Decades Experience.J Investig Allergol Clin Immunol. 2017;27(5):299-304. doi: 10.18176/jiaci.0147. Epub 2017 Mar 7.
2 Gene therapy for immunodeficiency due to adenosine deaminase deficiency.N Engl J Med. 2009 Jan 29;360(5):447-58. doi: 10.1056/NEJMoa0805817.
3 Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci.Nat Genet. 2016 May;48(5):510-8. doi: 10.1038/ng.3528. Epub 2016 Mar 14.
4 Stem cell transcriptome responses and corresponding biomarkers that indicate the transition from adaptive responses to cytotoxicity. Chem Res Toxicol. 2017 Apr 17;30(4):905-922.
5 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
6 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
7 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
8 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
9 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
10 Identification of novel low-dose bisphenol a targets in human foreskin fibroblast cells derived from hypospadias patients. PLoS One. 2012;7(5):e36711. doi: 10.1371/journal.pone.0036711. Epub 2012 May 4.
11 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
12 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
13 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
14 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
15 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
16 Interindividual variation in gene expression responses and metabolite formation in acetaminophen-exposed primary human hepatocytes. Arch Toxicol. 2016 May;90(5):1103-15. doi: 10.1007/s00204-015-1545-2. Epub 2015 Jun 24.