General Information of Drug Off-Target (DOT) (ID: OTPDCK1F)

DOT Name NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR)
Synonyms AR; Adrenodoxin reductase; EC 1.18.1.6; Ferredoxin--NADP(+) reductase; Ferredoxin reductase
Gene Name FDXR
Related Disease
Auditory neuropathy-optic atrophy syndrome ( )
Optic atrophy-ataxia-peripheral neuropathy-global developmental delay syndrome ( )
UniProt ID
ADRO_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
1.18.1.6
Pfam ID
PF07992
Sequence
MASRCWRWWGWSAWPRTRLPPAGSTPSFCHHFSTQEKTPQICVVGSGPAGFYTAQHLLKH
PQAHVDIYEKQPVPFGLVRFGVAPDHPEVKNVINTFTQTAHSGRCAFWGNVEVGRDVTVP
ELREAYHAVVLSYGAEDHRALEIPGEELPGVCSARAFVGWYNGLPENQELEPDLSCDTAV
ILGQGNVALDVARILLTPPEHLERTDITKAALGVLRQSRVKTVWLVGRRGPLQVAFTIKE
LREMIQLPGARPILDPVDFLGLQDKIKEVPRPRKRLTELLLRTATEKPGPAEAARQASAS
RAWGLRFFRSPQQVLPSPDGRRAAGVRLAVTRLEGVDEATRAVPTGDMEDLPCGLVLSSI
GYKSRPVDPSVPFDSKLGVIPNVEGRVMDVPGLYCSGWVKRGPTGVIATTMTDSFLTGQM
LLQDLKAGLLPSGPRPGYAAIQALLSSRGVRPVSFSDWEKLDAEEVARGQGTGKPREKLV
DPQEMLRLLGH
Function
Serves as the first electron transfer protein in all the mitochondrial P450 systems including cholesterol side chain cleavage in all steroidogenic tissues, steroid 11-beta hydroxylation in the adrenal cortex, 25-OH-vitamin D3-24 hydroxylation in the kidney, and sterol C-27 hydroxylation in the liver.
Reactome Pathway
Endogenous sterols (R-HSA-211976 )
Electron transport from NADPH to Ferredoxin (R-HSA-2395516 )
Defective CYP11A1 causes AICSR (R-HSA-5579026 )
Pregnenolone biosynthesis (R-HSA-196108 )
BioCyc Pathway
MetaCyc:HS08587-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Auditory neuropathy-optic atrophy syndrome DISM0JK2 Strong Autosomal recessive [1]
Optic atrophy-ataxia-peripheral neuropathy-global developmental delay syndrome DISIGVK9 Supportive Autosomal recessive [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [3]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [9]
------------------------------------------------------------------------------------
24 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [4]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [5]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [6]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [8]
Quercetin DM3NC4M Approved Quercetin increases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [10]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [11]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [12]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [13]
Menadione DMSJDTY Approved Menadione increases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [11]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [6]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [14]
Etoposide DMNH3PG Approved Etoposide increases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [15]
Daunorubicin DMQUSBT Approved Daunorubicin increases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [15]
Colchicine DM2POTE Approved Colchicine decreases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [16]
Adenine DMZLHKJ Approved Adenine decreases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [16]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [17]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [18]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [19]
Camptothecin DM6CHNJ Phase 3 Camptothecin increases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [15]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [20]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [21]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [22]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of NADPH:adrenodoxin oxidoreductase, mitochondrial (FDXR). [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 24 Drug(s)

References

1 FDXR Mutations Cause Sensorial Neuropathies and Expand the Spectrum of Mitochondrial Fe-S-Synthesis Diseases. Am J Hum Genet. 2017 Oct 5;101(4):630-637. doi: 10.1016/j.ajhg.2017.09.007. Epub 2017 Sep 28.
2 Biallelic mutations in the ferredoxin reductase gene cause novel mitochondriopathy with optic atrophy. Hum Mol Genet. 2017 Dec 15;26(24):4937-4950. doi: 10.1093/hmg/ddx377.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
5 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
6 Cell-type-specific responses to chemotherapeutics in breast cancer. Cancer Res. 2004 Jun 15;64(12):4218-26.
7 The thioxotriazole copper(II) complex A0 induces endoplasmic reticulum stress and paraptotic death in human cancer cells. J Biol Chem. 2009 Sep 4;284(36):24306-19.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
10 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
11 Gene expression after treatment with hydrogen peroxide, menadione, or t-butyl hydroperoxide in breast cancer cells. Cancer Res. 2002 Nov 1;62(21):6246-54.
12 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
13 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
14 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
15 Characterization of DNA reactive and non-DNA reactive anticancer drugs by gene expression profiling. Mutat Res. 2007 Jun 1;619(1-2):16-29. doi: 10.1016/j.mrfmmm.2006.12.007. Epub 2007 Feb 8.
16 Utilization of CDKN1A/p21 gene for class discrimination of DNA damage-induced clastogenicity. Toxicology. 2014 Jan 6;315:8-16. doi: 10.1016/j.tox.2013.10.009. Epub 2013 Nov 6.
17 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
18 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
19 A novel long noncoding RNA AK001796 acts as an oncogene and is involved in cell growth inhibition by resveratrol in lung cancer. Toxicol Appl Pharmacol. 2015 Jun 1;285(2):79-88.
20 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
21 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
22 The interference effects of bisphenol A on the synthesis of steroid hormones in human ovarian granulosa cells. Environ Toxicol. 2021 Apr;36(4):665-674. doi: 10.1002/tox.23070. Epub 2020 Dec 1.