General Information of Drug Off-Target (DOT) (ID: OTQDYH8E)

DOT Name Cyclic GMP-AMP phosphodiesterase SMPDL3A (SMPDL3A)
Synonyms 2',3'-cGAMP phosphodiesterase SMPDL3A; EC 3.1.4.-; Acid sphingomyelinase-like phosphodiesterase 3a; ASM-like phosphodiesterase 3a; EC 3.6.1.15
Gene Name SMPDL3A
UniProt ID
ASM3A_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5EBB; 5EBE
EC Number
3.1.4.-; 3.6.1.15
Pfam ID
PF19272 ; PF00149
Sequence
MALVRALVCCLLTAWHCRSGLGLPVAPAGGRNPPPAIGQFWHVTDLHLDPTYHITDDHTK
VCASSKGANASNPGPFGDVLCDSPYQLILSAFDFIKNSGQEASFMIWTGDSPPHVPVPEL
STDTVINVITNMTTTIQSLFPNLQVFPALGNHDYWPQDQLPVVTSKVYNAVANLWKPWLD
EEAISTLRKGGFYSQKVTTNPNLRIISLNTNLYYGPNIMTLNKTDPANQFEWLESTLNNS
QQNKEKVYIIAHVPVGYLPSSQNITAMREYYNEKLIDIFQKYSDVIAGQFYGHTHRDSIM
VLSDKKGSPVNSLFVAPAVTPVKSVLEKQTNNPGIRLFQYDPRDYKLLDMLQYYLNLTEA
NLKGESIWKLEYILTQTYDIEDLQPESLYGLAKQFTILDSKQFIKYYNYFFVSYDSSVTC
DKTCKAFQICAIMNLDNISYADCLKQLYIKHNY
Function
Cyclic-nucleotide phosphodiesterase that acts as a negative regulator of innate immunity by mediating degradation of 2',3'-cGAMP, thereby inhibiting the cGAS-STING signaling. Specifically linearizes 2',3'-cGAMP into 2'5'-bond pGpA and further hydrolyzes pGpA to produce GpA. Also has in vitro nucleotide phosphodiesterase activity with nucleoside triphosphates, such as ATP. Has in vitro activity with p-nitrophenyl-TMP. Has lower activity with nucleoside diphosphates, and no activity with nucleoside monophosphates. Has in vitro activity with CDP-choline, giving rise to CMP and phosphocholine. Has in vitro activity with CDP-ethanolamine. Does not have sphingomyelin phosphodiesterase activity.
Tissue Specificity Detected in blood serum. Detected in macrophages (at protein level).

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 5 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Etoposide DMNH3PG Approved Cyclic GMP-AMP phosphodiesterase SMPDL3A (SMPDL3A) affects the response to substance of Etoposide. [17]
Mitomycin DMH0ZJE Approved Cyclic GMP-AMP phosphodiesterase SMPDL3A (SMPDL3A) affects the response to substance of Mitomycin. [17]
Theophylline DMRJFN9 Approved Cyclic GMP-AMP phosphodiesterase SMPDL3A (SMPDL3A) increases the Therapeutic agent toxicity ADR of Theophylline. [18]
Enprofylline DMFYZKN Approved Cyclic GMP-AMP phosphodiesterase SMPDL3A (SMPDL3A) increases the Therapeutic agent toxicity ADR of Enprofylline. [18]
isobutylmethylxanthine DM46F5X Investigative Cyclic GMP-AMP phosphodiesterase SMPDL3A (SMPDL3A) increases the Therapeutic agent toxicity ADR of isobutylmethylxanthine. [18]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Cyclic GMP-AMP phosphodiesterase SMPDL3A (SMPDL3A). [1]
Arsenic DMTL2Y1 Approved Arsenic increases the methylation of Cyclic GMP-AMP phosphodiesterase SMPDL3A (SMPDL3A). [6]
------------------------------------------------------------------------------------
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Cyclic GMP-AMP phosphodiesterase SMPDL3A (SMPDL3A). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Cyclic GMP-AMP phosphodiesterase SMPDL3A (SMPDL3A). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Cyclic GMP-AMP phosphodiesterase SMPDL3A (SMPDL3A). [4]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Cyclic GMP-AMP phosphodiesterase SMPDL3A (SMPDL3A). [5]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Cyclic GMP-AMP phosphodiesterase SMPDL3A (SMPDL3A). [7]
Progesterone DMUY35B Approved Progesterone increases the expression of Cyclic GMP-AMP phosphodiesterase SMPDL3A (SMPDL3A). [8]
Menadione DMSJDTY Approved Menadione affects the expression of Cyclic GMP-AMP phosphodiesterase SMPDL3A (SMPDL3A). [9]
Cytarabine DMZD5QR Approved Cytarabine decreases the expression of Cyclic GMP-AMP phosphodiesterase SMPDL3A (SMPDL3A). [10]
GSK2110183 DMZHB37 Phase 2 GSK2110183 increases the expression of Cyclic GMP-AMP phosphodiesterase SMPDL3A (SMPDL3A). [11]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Cyclic GMP-AMP phosphodiesterase SMPDL3A (SMPDL3A). [12]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Cyclic GMP-AMP phosphodiesterase SMPDL3A (SMPDL3A). [13]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Cyclic GMP-AMP phosphodiesterase SMPDL3A (SMPDL3A). [14]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Cyclic GMP-AMP phosphodiesterase SMPDL3A (SMPDL3A). [15]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Cyclic GMP-AMP phosphodiesterase SMPDL3A (SMPDL3A). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
4 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
5 Persistent and non-persistent changes in gene expression result from long-term estrogen exposure of MCF-7 breast cancer cells. J Steroid Biochem Mol Biol. 2011 Feb;123(3-5):140-50.
6 Epigenetic changes in individuals with arsenicosis. Chem Res Toxicol. 2011 Feb 18;24(2):165-7. doi: 10.1021/tx1004419. Epub 2011 Feb 4.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 Coordinate up-regulation of TMEM97 and cholesterol biosynthesis genes in normal ovarian surface epithelial cells treated with progesterone: implications for pathogenesis of ovarian cancer. BMC Cancer. 2007 Dec 11;7:223.
9 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
10 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
11 Novel ATP-competitive Akt inhibitor afuresertib suppresses the proliferation of malignant pleural mesothelioma cells. Cancer Med. 2017 Nov;6(11):2646-2659. doi: 10.1002/cam4.1179. Epub 2017 Sep 27.
12 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
13 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
14 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
15 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
16 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
17 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.
18 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.