General Information of Drug Off-Target (DOT) (ID: OTQX45UM)

DOT Name G-protein coupled receptor 87 (GPR87)
Synonyms G-protein coupled receptor 95
Gene Name GPR87
UniProt ID
GPR87_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00001
Sequence
MGFNLTLAKLPNNELHGQESHNSGNRSDGPGKNTTLHNEFDTIVLPVLYLIIFVASILLN
GLAVWIFFHIRNKTSFIFYLKNIVVADLIMTLTFPFRIVHDAGFGPWYFKFILCRYTSVL
FYANMYTSIVFLGLISIDRYLKVVKPFGDSRMYSITFTKVLSVCVWVIMAVLSLPNIILT
NGQPTEDNIHDCSKLKSPLGVKWHTAVTYVNSCLFVAVLVILIGCYIAISRYIHKSSRQF
ISQSSRKRKHNQSIRVVVAVFFTCFLPYHLCRIPFTFSHLDRLLDESAQKILYYCKEITL
FLSACNVCLDPIIYFFMCRSFSRRLFKKSNIRTRSESIRSLQSVRRSEVRIYYDYTDV
Function Receptor for lysophosphatidic acid (LPA). Necessary for p53/TP53-dependent survival in response to DNA damage.
Tissue Specificity Expressed in placenta and prostate. Weaker expression in thymus. Not expressed in thalamus, hippocampus, pons or cerebellum. Overexpressed in squamous cell carcinoma of the lung.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of G-protein coupled receptor 87 (GPR87). [1]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of G-protein coupled receptor 87 (GPR87). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of G-protein coupled receptor 87 (GPR87). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of G-protein coupled receptor 87 (GPR87). [4]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of G-protein coupled receptor 87 (GPR87). [5]
Estradiol DMUNTE3 Approved Estradiol increases the expression of G-protein coupled receptor 87 (GPR87). [6]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of G-protein coupled receptor 87 (GPR87). [7]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of G-protein coupled receptor 87 (GPR87). [8]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of G-protein coupled receptor 87 (GPR87). [9]
Cidofovir DMA13GD Approved Cidofovir decreases the expression of G-protein coupled receptor 87 (GPR87). [5]
Ifosfamide DMCT3I8 Approved Ifosfamide decreases the expression of G-protein coupled receptor 87 (GPR87). [5]
Clodronate DM9Y6X7 Approved Clodronate decreases the expression of G-protein coupled receptor 87 (GPR87). [5]
Adefovir dipivoxil DMMAWY1 Approved Adefovir dipivoxil increases the expression of G-protein coupled receptor 87 (GPR87). [5]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of G-protein coupled receptor 87 (GPR87). [11]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of G-protein coupled receptor 87 (GPR87). [12]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of G-protein coupled receptor 87 (GPR87). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of G-protein coupled receptor 87 (GPR87). [10]
------------------------------------------------------------------------------------

References

1 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
4 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
5 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
6 Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol. 2009 Nov 1;240(3):355-66.
7 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
8 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
9 Evaluation of developmental toxicity using undifferentiated human embryonic stem cells. J Appl Toxicol. 2015 Feb;35(2):205-18.
10 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
11 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
12 Transcriptomic?pathway?and?benchmark dose analysis of Bisphenol A, Bisphenol S, Bisphenol F, and 3,3',5,5'-Tetrabromobisphenol A in H9 human embryonic stem cells. Toxicol In Vitro. 2021 Apr;72:105097. doi: 10.1016/j.tiv.2021.105097. Epub 2021 Jan 18.
13 Regulation of chromatin assembly and cell transformation by formaldehyde exposure in human cells. Environ Health Perspect. 2017 Sep 21;125(9):097019.