General Information of Drug Off-Target (DOT) (ID: OTR67PGU)

DOT Name Fas apoptotic inhibitory molecule 1 (FAIM)
Gene Name FAIM
Related Disease
Nasopharyngeal carcinoma ( )
UniProt ID
FAIM1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2KW1; 3MX7
Pfam ID
PF06905
Sequence
MTDLVAVWDVALSDGVHKIEFEHGTTSGKRVVYVDGKEEIRKEWMFKLVGKETFYVGAAK
TKATINIDAISGFAYEYTLEINGKSLKKYMEDRSKTTNTWVLHMDGENFRIVLEKDAMDV
WCNGKKLETAGEFVDDGTETHFSIGNHDCYIKAVSSGKRKEGIIHTLIVDNREIPEIAS
Function Plays a role as an inducible effector molecule that mediates Fas resistance produced by surface Ig engagement in B cells.

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Nasopharyngeal carcinoma DISAOTQ0 moderate Altered Expression [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Fas apoptotic inhibitory molecule 1 (FAIM). [2]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Fas apoptotic inhibitory molecule 1 (FAIM). [17]
------------------------------------------------------------------------------------
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Fas apoptotic inhibitory molecule 1 (FAIM). [3]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Fas apoptotic inhibitory molecule 1 (FAIM). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Fas apoptotic inhibitory molecule 1 (FAIM). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Fas apoptotic inhibitory molecule 1 (FAIM). [6]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Fas apoptotic inhibitory molecule 1 (FAIM). [7]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Fas apoptotic inhibitory molecule 1 (FAIM). [8]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Fas apoptotic inhibitory molecule 1 (FAIM). [9]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Fas apoptotic inhibitory molecule 1 (FAIM). [10]
Phenobarbital DMXZOCG Approved Phenobarbital decreases the expression of Fas apoptotic inhibitory molecule 1 (FAIM). [11]
Progesterone DMUY35B Approved Progesterone increases the expression of Fas apoptotic inhibitory molecule 1 (FAIM). [12]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Fas apoptotic inhibitory molecule 1 (FAIM). [13]
Acetic Acid, Glacial DM4SJ5Y Approved Acetic Acid, Glacial decreases the expression of Fas apoptotic inhibitory molecule 1 (FAIM). [14]
Motexafin gadolinium DMEJKRF Approved Motexafin gadolinium decreases the expression of Fas apoptotic inhibitory molecule 1 (FAIM). [14]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Fas apoptotic inhibitory molecule 1 (FAIM). [15]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Fas apoptotic inhibitory molecule 1 (FAIM). [16]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Fas apoptotic inhibitory molecule 1 (FAIM). [18]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Fas apoptotic inhibitory molecule 1 (FAIM). [19]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Fas apoptotic inhibitory molecule 1 (FAIM). [20]
QUERCITRIN DM1DH96 Investigative QUERCITRIN increases the expression of Fas apoptotic inhibitory molecule 1 (FAIM). [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)

References

1 Genome-wide expression profiling reveals EBV-associated inhibition of MHC class I expression in nasopharyngeal carcinoma.Cancer Res. 2006 Aug 15;66(16):7999-8006. doi: 10.1158/0008-5472.CAN-05-4399.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
4 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
5 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
8 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
9 A genomic approach to predict synergistic combinations for breast cancer treatment. Pharmacogenomics J. 2013 Feb;13(1):94-104. doi: 10.1038/tpj.2011.48. Epub 2011 Nov 15.
10 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
11 Dose- and time-dependent effects of phenobarbital on gene expression profiling in human hepatoma HepaRG cells. Toxicol Appl Pharmacol. 2009 Feb 1;234(3):345-60.
12 Progesterone regulation of implantation-related genes: new insights into the role of oestrogen. Cell Mol Life Sci. 2007 Apr;64(7-8):1009-32.
13 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
14 Motexafin gadolinium and zinc induce oxidative stress responses and apoptosis in B-cell lymphoma lines. Cancer Res. 2005 Dec 15;65(24):11676-88.
15 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
16 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
17 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
18 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
19 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
20 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
21 Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer. Arch Med Res. 2014 Aug;45(6):445-54.