General Information of Drug Off-Target (DOT) (ID: OTYHKDEO)

DOT Name Protein ERGIC-53 (LMAN1)
Synonyms ER-Golgi intermediate compartment 53 kDa protein; Gp58; Intracellular mannose-specific lectin MR60; Lectin mannose-binding 1
Gene Name LMAN1
Related Disease
Factor V and factor VIII, combined deficiency of, type 1 ( )
Adenoma ( )
Carcinoma ( )
Coagulation defect ( )
Colorectal neoplasm ( )
Congenital dyserythropoietic anemia type 2 ( )
Haemophilia A ( )
Hematologic disease ( )
IgA nephropathy ( )
Neoplasm ( )
Vitamin K-dependent clotting factors, combined deficiency of, type 1 ( )
Combined deficiency of factor V and factor VIII ( )
Thanatophoric dysplasia type 2 ( )
Allergy ( )
Coronary atherosclerosis ( )
Coronary heart disease ( )
Malaria ( )
UniProt ID
LMAN1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3A4U; 3LCP; 3WHT; 3WHU; 3WNX; 4GKX; 4GKY; 4YGB; 4YGC; 4YGD; 4YGE
Pfam ID
PF03388
Sequence
MAGSRQRGLRARVRPLFCALLLSLGRFVRGDGVGGDPAVALPHRRFEYKYSFKGPHLVQS
DGTVPFWAHAGNAIPSSDQIRVAPSLKSQRGSVWTKTKAAFENWEVEVTFRVTGRGRIGA
DGLAIWYAENQGLEGPVFGSADLWNGVGIFFDSFDNDGKKNNPAIVIIGNNGQIHYDHQN
DGASQALASCQRDFRNKPYPVRAKITYYQNTLTVMINNGFTPDKNDYEFCAKVENMIIPA
QGHFGISAATGGLADDHDVLSFLTFQLTEPGKEPPTPDKEISEKEKEKYQEEFEHFQQEL
DKKKEEFQKGHPDLQGQPAEEIFESVGDRELRQVFEGQNRIHLEIKQLNRQLDMILDEQR
RYVSSLTEEISKRGAGMPGQHGQITQQELDTVVKTQHEILRQVNEMKNSMSETVRLVSGM
QHPGSAGGVYETTQHFIDIKEHLHIVKRDIDNLVQRNMPSNEKPKCPELPPFPSCLSTVH
FIIFVVVQTVLFIGYIMYRSQQEAAAKKFF
Function
Mannose-specific lectin. May recognize sugar residues of glycoproteins, glycolipids, or glycosylphosphatidyl inositol anchors and may be involved in the sorting or recycling of proteins, lipids, or both. The LMAN1-MCFD2 complex forms a specific cargo receptor for the ER-to-Golgi transport of selected proteins.
Tissue Specificity Ubiquitous.
KEGG Pathway
Protein processing in endoplasmic reticulum (hsa04141 )
Reactome Pathway
Cargo concentration in the ER (R-HSA-5694530 )
RHOA GTPase cycle (R-HSA-8980692 )
RHOC GTPase cycle (R-HSA-9013106 )
RAC2 GTPase cycle (R-HSA-9013404 )
RHOD GTPase cycle (R-HSA-9013405 )
RHOG GTPase cycle (R-HSA-9013408 )
RAC3 GTPase cycle (R-HSA-9013423 )
Transport to the Golgi and subsequent modification (R-HSA-948021 )
COPII-mediated vesicle transport (R-HSA-204005 )

Molecular Interaction Atlas (MIA) of This DOT

17 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Factor V and factor VIII, combined deficiency of, type 1 DIS1K6SD Definitive Autosomal recessive [1]
Adenoma DIS78ZEV Strong Altered Expression [2]
Carcinoma DISH9F1N Strong Altered Expression [2]
Coagulation defect DIS9X3H6 Strong Genetic Variation [3]
Colorectal neoplasm DISR1UCN Strong Biomarker [2]
Congenital dyserythropoietic anemia type 2 DIS5RDUE Strong Genetic Variation [4]
Haemophilia A DIS0RQ2E Strong Genetic Variation [5]
Hematologic disease DIS9XD9A Strong Genetic Variation [4]
IgA nephropathy DISZ8MTK Strong Biomarker [6]
Neoplasm DISZKGEW Strong Biomarker [2]
Vitamin K-dependent clotting factors, combined deficiency of, type 1 DIS1X7PX Strong Biomarker [7]
Combined deficiency of factor V and factor VIII DISZM9BG Supportive Autosomal recessive [8]
Thanatophoric dysplasia type 2 DIS2RRO1 Disputed Biomarker [9]
Allergy DIS48ZAP Limited Biomarker [10]
Coronary atherosclerosis DISKNDYU Limited Genetic Variation [11]
Coronary heart disease DIS5OIP1 Limited Genetic Variation [11]
Malaria DISQ9Y50 Limited Genetic Variation [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Protein ERGIC-53 (LMAN1). [13]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Protein ERGIC-53 (LMAN1). [14]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Protein ERGIC-53 (LMAN1). [15]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Protein ERGIC-53 (LMAN1). [16]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Protein ERGIC-53 (LMAN1). [17]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Protein ERGIC-53 (LMAN1). [18]
Phenobarbital DMXZOCG Approved Phenobarbital increases the expression of Protein ERGIC-53 (LMAN1). [19]
Panobinostat DM58WKG Approved Panobinostat decreases the expression of Protein ERGIC-53 (LMAN1). [20]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Protein ERGIC-53 (LMAN1). [21]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Protein ERGIC-53 (LMAN1). [20]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of Protein ERGIC-53 (LMAN1). [20]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Protein ERGIC-53 (LMAN1). [14]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Protein ERGIC-53 (LMAN1). [22]
Geldanamycin DMS7TC5 Discontinued in Phase 2 Geldanamycin increases the expression of Protein ERGIC-53 (LMAN1). [23]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Protein ERGIC-53 (LMAN1). [24]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Protein ERGIC-53 (LMAN1). [25]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Protein ERGIC-53 (LMAN1). [26]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Protein ERGIC-53 (LMAN1). [27]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Protein ERGIC-53 (LMAN1). [28]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 High frequency of LMAN1 abnormalities in colorectal tumors with microsatellite instability.Cancer Res. 2009 Jan 1;69(1):292-9. doi: 10.1158/0008-5472.CAN-08-3314.
3 Combined deficiency of coagulation factors V and VIII: an update.Semin Thromb Hemost. 2013 Sep;39(6):613-20. doi: 10.1055/s-0033-1349223. Epub 2013 Jul 12.
4 The COPII pathway and hematologic disease.Blood. 2012 Jul 5;120(1):31-8. doi: 10.1182/blood-2012-01-292086. Epub 2012 May 14.
5 The first case of combined coagulation factor V and coagulation factor VIII deficiency in Poland due to a novel p.Tyr135Asn missense mutation in the MCFD2 gene.Blood Coagul Fibrinolysis. 2008 Sep;19(6):531-534. doi: 10.1097/MBC.0b013e3283061103.
6 IgA nephropathy-specific expression of the IgA Fc receptors (CD89) on blood phagocytic cells.Clin Exp Immunol. 1997 Nov;110(2):226-32. doi: 10.1111/j.1365-2249.1997.tb08321.x.
7 Familial multiple coagulation factor deficiencies: new biologic insight from rare genetic bleeding disorders.J Thromb Haemost. 2004 Sep;2(9):1564-72. doi: 10.1111/j.1538-7836.2004.00857.x.
8 Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell. 1998 Apr 3;93(1):61-70. doi: 10.1016/s0092-8674(00)81146-0.
9 Transient dimerization and interaction with ERGIC-53 occur in the fibroblast growth factor receptor 3 early secretory pathway.Int J Biochem Cell Biol. 2008;40(11):2649-59. doi: 10.1016/j.biocel.2008.05.017. Epub 2008 Jun 5.
10 Role of collectins in innate immunity against aspergillosis.Med Mycol. 2005 May;43 Suppl 1:S155-63. doi: 10.1080/13693780500088408.
11 Successful percutaneous coronary intervention in a patient with combined deficiency of FV and FVIII due to novel compound heterozygous mutations in LMAN1.Haemophilia. 2013 Jul;19(4):607-10. doi: 10.1111/hae.12128. Epub 2013 Apr 5.
12 Restricted polymorphisms of the mannose-binding lectin gene in a population of Papua New Guinea.Mutat Res. 2002 Aug 29;505(1-2):87-91. doi: 10.1016/s0027-5107(02)00142-2.
13 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
14 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
15 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
16 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
17 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
18 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
19 Proteomic analysis of hepatic effects of phenobarbital in mice with humanized liver. Arch Toxicol. 2022 Oct;96(10):2739-2754. doi: 10.1007/s00204-022-03338-7. Epub 2022 Jul 26.
20 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
21 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
22 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
23 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
24 Heat shock induces preferential translation of ERGIC-53 and affects its recycling pathway. J Biol Chem. 2004 Oct 8;279(41):42535-44. doi: 10.1074/jbc.M401860200. Epub 2004 Jul 29.
25 Bisphenol A Exposure Changes the Transcriptomic and Proteomic Dynamics of Human Retinoblastoma Y79 Cells. Genes (Basel). 2021 Feb 11;12(2):264. doi: 10.3390/genes12020264.
26 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
27 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
28 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.