General Information of Drug Off-Target (DOT) (ID: OTYZ9JXM)

DOT Name Filamin-A (FLNA)
Synonyms FLN-A; Actin-binding protein 280; ABP-280; Alpha-filamin; Endothelial actin-binding protein; Filamin-1; Non-muscle filamin
Gene Name FLNA
Related Disease
FG syndrome 2 ( )
Frontometaphyseal dysplasia 1 ( )
Heterotopia, periventricular, X-linked dominant ( )
Intestinal pseudoobstruction, neuronal, chronic idiopathic, X-linked ( )
Melnick-Needles syndrome ( )
Otopalatodigital syndrome type 1 ( )
Otopalatodigital syndrome type 2 ( )
Periventricular nodular heterotopia ( )
Terminal osseous dysplasia-pigmentary defects syndrome ( )
Cardiac valvular dysplasia, X-linked ( )
Congenital short bowel syndrome ( )
Frontometaphyseal dysplasia ( )
X-linked Ehlers-Danlos syndrome ( )
Familial thoracic aortic aneurysm and aortic dissection ( )
UniProt ID
FLNA_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2AAV; 2BP3; 2BRQ; 2J3S; 2JF1; 2K3T; 2K7P; 2K7Q; 2MTP; 2W0P; 2WFN; 3CNK; 3HOC; 3HOP; 3HOR; 3ISW; 3RGH; 4M9P; 4P3W; 5XR1; 6D8C; 6EW1; 7SC4; 7SFT
Pfam ID
PF00307 ; PF00630
Sequence
MSSSHSRAGQSAAGAAPGGGVDTRDAEMPATEKDLAEDAPWKKIQQNTFTRWCNEHLKCV
SKRIANLQTDLSDGLRLIALLEVLSQKKMHRKHNQRPTFRQMQLENVSVALEFLDRESIK
LVSIDSKAIVDGNLKLILGLIWTLILHYSISMPMWDEEEDEEAKKQTPKQRLLGWIQNKL
PQLPITNFSRDWQSGRALGALVDSCAPGLCPDWDSWDASKPVTNAREAMQQADDWLGIPQ
VITPEEIVDPNVDEHSVMTYLSQFPKAKLKPGAPLRPKLNPKKARAYGPGIEPTGNMVKK
RAEFTVETRSAGQGEVLVYVEDPAGHQEEAKVTANNDKNRTFSVWYVPEVTGTHKVTVLF
AGQHIAKSPFEVYVDKSQGDASKVTAQGPGLEPSGNIANKTTYFEIFTAGAGTGEVEVVI
QDPMGQKGTVEPQLEARGDSTYRCSYQPTMEGVHTVHVTFAGVPIPRSPYTVTVGQACNP
SACRAVGRGLQPKGVRVKETADFKVYTKGAGSGELKVTVKGPKGEERVKQKDLGDGVYGF
EYYPMVPGTYIVTITWGGQNIGRSPFEVKVGTECGNQKVRAWGPGLEGGVVGKSADFVVE
AIGDDVGTLGFSVEGPSQAKIECDDKGDGSCDVRYWPQEAGEYAVHVLCNSEDIRLSPFM
ADIRDAPQDFHPDRVKARGPGLEKTGVAVNKPAEFTVDAKHGGKAPLRVQVQDNEGCPVE
ALVKDNGNGTYSCSYVPRKPVKHTAMVSWGGVSIPNSPFRVNVGAGSHPNKVKVYGPGVA
KTGLKAHEPTYFTVDCAEAGQGDVSIGIKCAPGVVGPAEADIDFDIIRNDNDTFTVKYTP
RGAGSYTIMVLFADQATPTSPIRVKVEPSHDASKVKAEGPGLSRTGVELGKPTHFTVNAK
AAGKGKLDVQFSGLTKGDAVRDVDIIDHHDNTYTVKYTPVQQGPVGVNVTYGGDPIPKSP
FSVAVSPSLDLSKIKVSGLGEKVDVGKDQEFTVKSKGAGGQGKVASKIVGPSGAAVPCKV
EPGLGADNSVVRFLPREEGPYEVEVTYDGVPVPGSPFPLEAVAPTKPSKVKAFGPGLQGG
SAGSPARFTIDTKGAGTGGLGLTVEGPCEAQLECLDNGDGTCSVSYVPTEPGDYNINILF
ADTHIPGSPFKAHVVPCFDASKVKCSGPGLERATAGEVGQFQVDCSSAGSAELTIEICSE
AGLPAEVYIQDHGDGTHTITYIPLCPGAYTVTIKYGGQPVPNFPSKLQVEPAVDTSGVQC
YGPGIEGQGVFREATTEFSVDARALTQTGGPHVKARVANPSGNLTETYVQDRGDGMYKVE
YTPYEEGLHSVDVTYDGSPVPSSPFQVPVTEGCDPSRVRVHGPGIQSGTTNKPNKFTVET
RGAGTGGLGLAVEGPSEAKMSCMDNKDGSCSVEYIPYEAGTYSLNVTYGGHQVPGSPFKV
PVHDVTDASKVKCSGPGLSPGMVRANLPQSFQVDTSKAGVAPLQVKVQGPKGLVEPVDVV
DNADGTQTVNYVPSREGPYSISVLYGDEEVPRSPFKVKVLPTHDASKVKASGPGLNTTGV
PASLPVEFTIDAKDAGEGLLAVQITDPEGKPKKTHIQDNHDGTYTVAYVPDVTGRYTILI
KYGGDEIPFSPYRVRAVPTGDASKCTVTVSIGGHGLGAGIGPTIQIGEETVITVDTKAAG
KGKVTCTVCTPDGSEVDVDVVENEDGTFDIFYTAPQPGKYVICVRFGGEHVPNSPFQVTA
LAGDQPSVQPPLRSQQLAPQYTYAQGGQQTWAPERPLVGVNGLDVTSLRPFDLVIPFTIK
KGEITGEVRMPSGKVAQPTITDNKDGTVTVRYAPSEAGLHEMDIRYDNMHIPGSPLQFYV
DYVNCGHVTAYGPGLTHGVVNKPATFTVNTKDAGEGGLSLAIEGPSKAEISCTDNQDGTC
SVSYLPVLPGDYSILVKYNEQHVPGSPFTARVTGDDSMRMSHLKVGSAADIPINISETDL
SLLTATVVPPSGREEPCLLKRLRNGHVGISFVPKETGEHLVHVKKNGQHVASSPIPVVIS
QSEIGDASRVRVSGQGLHEGHTFEPAEFIIDTRDAGYGGLSLSIEGPSKVDINTEDLEDG
TCRVTYCPTEPGNYIINIKFADQHVPGSPFSVKVTGEGRVKESITRRRRAPSVANVGSHC
DLSLKIPEISIQDMTAQVTSPSGKTHEAEIVEGENHTYCIRFVPAEMGTHTVSVKYKGQH
VPGSPFQFTVGPLGEGGAHKVRAGGPGLERAEAGVPAEFSIWTREAGAGGLAIAVEGPSK
AEISFEDRKDGSCGVAYVVQEPGDYEVSVKFNEEHIPDSPFVVPVASPSGDARRLTVSSL
QESGLKVNQPASFAVSLNGAKGAIDAKVHSPSGALEECYVTEIDQDKYAVRFIPRENGVY
LIDVKFNGTHIPGSPFKIRVGEPGHGGDPGLVSAYGAGLEGGVTGNPAEFVVNTSNAGAG
ALSVTIDGPSKVKMDCQECPEGYRVTYTPMAPGSYLISIKYGGPYHIGGSPFKAKVTGPR
LVSNHSLHETSSVFVDSLTKATCAPQHGAPGPGPADASKVVAKGLGLSKAYVGQKSSFTV
DCSKAGNNMLLVGVHGPRTPCEEILVKHVGSRLYSVSYLLKDKGEYTLVVKWGDEHIPGS
PYRVVVP
Function
Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking. Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance. During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons.
Tissue Specificity Ubiquitous.
KEGG Pathway
MAPK sig.ling pathway (hsa04010 )
Focal adhesion (hsa04510 )
Salmonella infection (hsa05132 )
Proteoglycans in cancer (hsa05205 )
Reactome Pathway
GP1b-IX-V activation signalling (R-HSA-430116 )
Cell-extracellular matrix interactions (R-HSA-446353 )
RHO GTPases activate PAKs (R-HSA-5627123 )
OAS antiviral response (R-HSA-8983711 )
Platelet degranulation (R-HSA-114608 )

Molecular Interaction Atlas (MIA) of This DOT

14 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
FG syndrome 2 DISSL641 Definitive X-linked recessive [1]
Frontometaphyseal dysplasia 1 DIS2MB3L Definitive X-linked [2]
Heterotopia, periventricular, X-linked dominant DISP6LBO Definitive X-linked dominant [3]
Intestinal pseudoobstruction, neuronal, chronic idiopathic, X-linked DIS5GATC Definitive X-linked [4]
Melnick-Needles syndrome DIS0KTGM Definitive X-linked dominant [5]
Otopalatodigital syndrome type 1 DISL8CE9 Definitive X-linked recessive [6]
Otopalatodigital syndrome type 2 DISHMBG5 Definitive X-linked [6]
Periventricular nodular heterotopia DISU3ZRI Definitive X-linked [7]
Terminal osseous dysplasia-pigmentary defects syndrome DISJ0KWQ Definitive X-linked [4]
Cardiac valvular dysplasia, X-linked DISN2WU4 Strong X-linked [8]
Congenital short bowel syndrome DIS2A1HB Supportive Autosomal recessive [9]
Frontometaphyseal dysplasia DISXFPAW Supportive Autosomal dominant [10]
X-linked Ehlers-Danlos syndrome DISQXOLC Supportive X-linked [11]
Familial thoracic aortic aneurysm and aortic dissection DIS069FB Limited X-linked [7]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Artesunate DMR27C8 Approved Filamin-A (FLNA) increases the response to substance of Artesunate. [39]
------------------------------------------------------------------------------------
7 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Filamin-A (FLNA). [12]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the phosphorylation of Filamin-A (FLNA). [23]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Filamin-A (FLNA). [32]
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of Filamin-A (FLNA). [33]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Filamin-A (FLNA). [34]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Filamin-A (FLNA). [35]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of Filamin-A (FLNA). [34]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Drug(s)
21 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Filamin-A (FLNA). [13]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Filamin-A (FLNA). [14]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Filamin-A (FLNA). [15]
Doxorubicin DMVP5YE Approved Doxorubicin affects the expression of Filamin-A (FLNA). [16]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Filamin-A (FLNA). [17]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Filamin-A (FLNA). [18]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Filamin-A (FLNA). [19]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Filamin-A (FLNA). [20]
Quercetin DM3NC4M Approved Quercetin increases the expression of Filamin-A (FLNA). [21]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Filamin-A (FLNA). [22]
Selenium DM25CGV Approved Selenium increases the expression of Filamin-A (FLNA). [24]
Isotretinoin DM4QTBN Approved Isotretinoin increases the expression of Filamin-A (FLNA). [25]
Rosiglitazone DMILWZR Approved Rosiglitazone affects the expression of Filamin-A (FLNA). [26]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Filamin-A (FLNA). [28]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate increases the expression of Filamin-A (FLNA). [29]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Filamin-A (FLNA). [30]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Filamin-A (FLNA). [24]
Afimoxifene DMFORDT Phase 2 Afimoxifene increases the expression of Filamin-A (FLNA). [19]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Filamin-A (FLNA). [36]
Glyphosate DM0AFY7 Investigative Glyphosate decreases the expression of Filamin-A (FLNA). [37]
ELLAGIC ACID DMX8BS5 Investigative ELLAGIC ACID decreases the expression of Filamin-A (FLNA). [38]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Drug(s)
2 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Dihydroartemisinin DMBXVMZ Approved Dihydroartemisinin affects the binding of Filamin-A (FLNA). [27]
DNCB DMDTVYC Phase 2 DNCB affects the binding of Filamin-A (FLNA). [31]
------------------------------------------------------------------------------------

References

1 Filamin A mutation is one cause of FG syndrome. Am J Med Genet A. 2007 Aug 15;143A(16):1876-9. doi: 10.1002/ajmg.a.31751.
2 Autosomal dominant frontometaphyseal dysplasia: Delineation of the clinical phenotype. Am J Med Genet A. 2017 Jul;173(7):1739-1746. doi: 10.1002/ajmg.a.38267. Epub 2017 May 12.
3 Flexible and scalable diagnostic filtering of genomic variants using G2P with Ensembl VEP. Nat Commun. 2019 May 30;10(1):2373. doi: 10.1038/s41467-019-10016-3.
4 The locus for a novel syndromic form of neuronal intestinal pseudoobstruction maps to Xq28. Am J Hum Genet. 1996 Apr;58(4):743-8.
5 Localized mutations in the gene encoding the cytoskeletal protein filamin A cause diverse malformations in humans. Nat Genet. 2003 Apr;33(4):487-91. doi: 10.1038/ng1119. Epub 2003 Mar 3.
6 A novel 9 bp deletion in the filamin a gene causes an otopalatodigital-spectrum disorder with a variable, intermediate phenotype. Am J Med Genet A. 2005 Feb 1;132A(4):386-90. doi: 10.1002/ajmg.a.30484.
7 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
8 Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy. Circulation. 2007 Jan 2;115(1):40-9. doi: 10.1161/CIRCULATIONAHA.106.622621. Epub 2006 Dec 26.
9 Congenital short bowel syndrome as the presenting symptom in male patients with FLNA mutations. Genet Med. 2013 Apr;15(4):310-3. doi: 10.1038/gim.2012.123. Epub 2012 Oct 4.
10 Genotype-epigenotype-phenotype correlations in females with frontometaphyseal dysplasia. Am J Med Genet A. 2006 May 15;140(10):1069-73. doi: 10.1002/ajmg.a.31213.
11 Ehlers-Danlos syndrome with lethal cardiac valvular dystrophy in males carrying a novel splice mutation in FLNA. Am J Med Genet A. 2017 Jan;173(1):169-176. doi: 10.1002/ajmg.a.38004. Epub 2016 Oct 14.
12 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
13 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
14 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
15 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
16 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
17 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
18 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
19 Identification of novel ER-alpha target genes in breast cancer cells: gene- and cell-selective co-regulator recruitment at target promoters determines the response to 17beta-estradiol and tamoxifen. Mol Cell Endocrinol. 2010 Jan 15;314(1):90-100.
20 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
21 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
22 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
23 Filamin A phosphorylation by Akt promotes cell migration in response to arsenic. Oncotarget. 2015 May 20;6(14):12009-19. doi: 10.18632/oncotarget.3617.
24 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
25 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
26 Proteomic analysis of human adipose tissue after rosiglitazone treatment shows coordinated changes to promote glucose uptake. Obesity (Silver Spring). 2010 Jan;18(1):27-34. doi: 10.1038/oby.2009.208. Epub 2009 Jun 25.
27 Untargeted Proteomics and Systems-Based Mechanistic Investigation of Artesunate in Human Bronchial Epithelial Cells. Chem Res Toxicol. 2015 Oct 19;28(10):1903-13. doi: 10.1021/acs.chemrestox.5b00105. Epub 2015 Sep 21.
28 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
29 Comparative proteomics reveals concordant and discordant biochemical effects of caffeine versus epigallocatechin-3-gallate in human endothelial cells. Toxicol Appl Pharmacol. 2019 Sep 1;378:114621. doi: 10.1016/j.taap.2019.114621. Epub 2019 Jun 10.
30 Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein. Mol Cell Proteomics. 2011 Jan;10(1):M110.002170.
31 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
32 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
33 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
34 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
35 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
36 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
37 Glyphosate-based herbicides at low doses affect canonical pathways in estrogen positive and negative breast cancer cell lines. PLoS One. 2019 Jul 11;14(7):e0219610. doi: 10.1371/journal.pone.0219610. eCollection 2019.
38 Interactive gene expression pattern in prostate cancer cells exposed to phenolic antioxidants. Life Sci. 2002 Mar 1;70(15):1821-39.
39 Factors determining sensitivity or resistance of tumor cell lines towards artesunate. Chem Biol Interact. 2010 Apr 15;185(1):42-52.