General Information of Drug Combination (ID: DC6HNLZ)

Drug Combination Name
Vemurafenib Isoniazid
Indication
Disease Entry Status REF
Melanoma Investigative [1]
Component Drugs Vemurafenib   DM62UG5 Isoniazid   DM5JVS3
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: SK-MEL-2
Zero Interaction Potency (ZIP) Score: 2.01
Bliss Independence Score: 3.62
Loewe Additivity Score: 0.52
LHighest Single Agent (HSA) Score: 0.1

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Vemurafenib
Disease Entry ICD 11 Status REF
Melanoma 2C30 Approved [2]
Vemurafenib Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Serine/threonine-protein kinase B-raf (BRAF) TTWCGQT BRAF_HUMAN Modulator [7]
------------------------------------------------------------------------------------
Vemurafenib Interacts with 3 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [8]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [9]
Organic anion transporting polypeptide 1B3 (SLCO1B3) DT9C1TS SO1B3_HUMAN Substrate [9]
------------------------------------------------------------------------------------
Vemurafenib Interacts with 1 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [10]
------------------------------------------------------------------------------------
Vemurafenib Interacts with 19 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Microphthalmia-associated transcription factor (MITF) OT6XJCZH MITF_HUMAN Affects Expression [5]
Myc proto-oncogene protein (MYC) OTPV5LUK MYC_HUMAN Decreases Expression [11]
Cyclin-dependent kinase 4 (CDK4) OT7EP05T CDK4_HUMAN Decreases Expression [12]
C-C motif chemokine 2 (CCL2) OTAD2HEL CCL2_HUMAN Increases Expression [13]
G1/S-specific cyclin-D1 (CCND1) OT8HPTKJ CCND1_HUMAN Decreases Expression [12]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Phosphorylation [6]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Phosphorylation [6]
CD70 antigen (CD70) OTHB2AL1 CD70_HUMAN Decreases Expression [14]
Prostaglandin G/H synthase 2 (PTGS2) OT75U9M4 PGH2_HUMAN Decreases Expression [12]
Sterol regulatory element-binding protein 1 (SREBF1) OTWBRPAI SRBP1_HUMAN Decreases Expression [15]
Melanocyte protein PMEL (PMEL) OTCDDHHM PMEL_HUMAN Increases Expression [5]
Melanoma-associated antigen 1 (MAGEA1) OTXAO193 MAGA1_HUMAN Decreases Expression [5]
Thyroxine 5-deiodinase (DIO3) OTNTITOT IOD3_HUMAN Decreases Expression [16]
Melanoma antigen recognized by T-cells 1 (MLANA) OT1N2S2K MAR1_HUMAN Increases Expression [5]
Hypoxia-inducible factor 1-alpha (HIF1A) OTADSC03 HIF1A_HUMAN Increases Expression [13]
GTPase KRas (KRAS) OT78QCN8 RASK_HUMAN Affects Response To Substance [17]
Serine/threonine-protein kinase B-raf (BRAF) OT7S81XQ BRAF_HUMAN Increases Response To Substance [18]
Heat shock 70 kDa protein 1A (HSPA1A) OTKGIE76 HS71A_HUMAN Decreases Response To Substance [19]
GTPase NRas (NRAS) OTVQ1DG3 RASN_HUMAN Affects Response To Substance [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 DOT(s)
Indication(s) of Isoniazid
Disease Entry ICD 11 Status REF
Latent tuberculosis infection N.A. Approved [3]
Pulmonary tuberculosis 1B10.Z Approved [3]
Tuberculosis 1B10-1B1Z Approved [4]
Isoniazid Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Bacterial Fatty acid synthetase I (Bact inhA) TTVTX4N INHA_MYCTU Inhibitor [21]
------------------------------------------------------------------------------------
Isoniazid Interacts with 3 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 2E1 (CYP2E1) DEVDYN7 CP2E1_HUMAN Metabolism [22]
Catalase-peroxidase (katG) DEAGY5M KATG_SYNE7 Metabolism [23]
Arylamine N-acetyltransferase (NAT) DEXCQTM A0A3P8LE58_TSUPA Metabolism [24]
------------------------------------------------------------------------------------
Isoniazid Interacts with 59 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Alanine aminotransferase 1 (GPT) OTOXOA0Q ALAT1_HUMAN Increases Expression [25]
N-alpha-acetyltransferase 20 (NAA20) OTJB0VA6 NAA20_HUMAN Increases ADR [26]
Cytochrome P450 2C8 (CYP2C8) OTHCWT42 CP2C8_HUMAN Decreases Activity [27]
Nuclear protein 1 (NUPR1) OT4FU8C0 NUPR1_HUMAN Increases Expression [28]
Inhibin beta E chain (INHBE) OTOI2NYG INHBE_HUMAN Increases Expression [28]
Protein DEPP1 (DEPP1) OTB36PHJ DEPP1_HUMAN Increases Expression [28]
Aldo-keto reductase family 1 member B10 (AKR1B10) OTOA4HTH AK1BA_HUMAN Increases Expression [20]
Tumor necrosis factor (TNF) OT4IE164 TNFA_HUMAN Increases Secretion [20]
Interferon gamma (IFNG) OTXG9JM7 IFNG_HUMAN Increases Secretion [20]
C-X-C motif chemokine 10 (CXCL10) OTTLQ6S0 CXL10_HUMAN Increases Secretion [20]
Interleukin-6 (IL6) OTUOSCCU IL6_HUMAN Increases Secretion [20]
NAD(P)H dehydrogenase 1 (NQO1) OTZGGIVK NQO1_HUMAN Increases Expression [20]
Interleukin-10 (IL10) OTIRFRXC IL10_HUMAN Increases Secretion [20]
Interleukin-12 subunit alpha (IL12A) OTDQT8GI IL12A_HUMAN Increases Secretion [20]
Interleukin-12 subunit beta (IL12B) OT0JF8A3 IL12B_HUMAN Increases Secretion [20]
Interleukin-17A (IL17A) OTY72FT2 IL17_HUMAN Increases Secretion [20]
Sulfiredoxin-1 (SRXN1) OTYDBO4L SRXN1_HUMAN Increases Expression [20]
Gamma-butyrobetaine dioxygenase (BBOX1) OTKEX4RK BODG_HUMAN Increases Expression [29]
Alpha-fetoprotein (AFP) OT9GG3ZI FETA_HUMAN Decreases Expression [29]
Sodium/potassium-transporting ATPase subunit beta-1 (ATP1B1) OTTO6ZP4 AT1B1_HUMAN Increases Expression [29]
Amyloid-beta precursor protein (APP) OTKFD7R4 A4_HUMAN Increases Expression [29]
Osteopontin (SPP1) OTJGC23Y OSTP_HUMAN Decreases Expression [29]
Mucin-1 (MUC1) OTHQI7IY MUC1_HUMAN Increases Expression [29]
14-3-3 protein sigma (SFN) OTLJCZ1U 1433S_HUMAN Decreases Expression [29]
DNA damage-inducible transcript 3 protein (DDIT3) OTI8YKKE DDIT3_HUMAN Decreases Expression [29]
Glutamate--cysteine ligase regulatory subunit (GCLM) OT6CP234 GSH0_HUMAN Decreases Expression [29]
Claudin-2 (CLDN2) OTRF3D6Y CLD2_HUMAN Increases Expression [29]
Large neutral amino acids transporter small subunit 1 (SLC7A5) OT2WPVXD LAT1_HUMAN Decreases Expression [29]
Tribbles homolog 3 (TRIB3) OTG5OS7X TRIB3_HUMAN Increases Expression [29]
Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2) OTKOZRZP PLOD2_HUMAN Increases Expression [30]
Transmembrane protease serine 2 (TMPRSS2) OTN44YQ5 TMPS2_HUMAN Affects Expression [31]
Interleukin-1 alpha (IL1A) OTPSGILV IL1A_HUMAN Increases Expression [32]
Interleukin-1 beta (IL1B) OT0DWXXB IL1B_HUMAN Increases Expression [32]
Albumin (ALB) OTVMM513 ALBU_HUMAN Affects Binding [33]
Antileukoproteinase (SLPI) OTUNFUU8 SLPI_HUMAN Increases Expression [32]
Catalase (CAT) OTHEBX9R CATA_HUMAN Decreases Activity [34]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [34]
Glucose-6-phosphate 1-dehydrogenase (G6PD) OT300SMK G6PD_HUMAN Decreases Activity [34]
5-aminolevulinate synthase, non-specific, mitochondrial (ALAS1) OTQY6ZSF HEM1_HUMAN Increases Expression [35]
Ferrochelatase, mitochondrial (FECH) OTDWEI6C HEMH_HUMAN Decreases Expression [35]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Phosphorylation [25]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Phosphorylation [25]
Prostaglandin G/H synthase 2 (PTGS2) OT75U9M4 PGH2_HUMAN Increases Expression [32]
Peroxisome proliferator-activated receptor gamma (PPARG) OTHMARHO PPARG_HUMAN Decreases Expression [36]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [34]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Activity [34]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [25]
Interleukin-24 (IL24) OT4VUWH1 IL24_HUMAN Increases Expression [32]
Nuclear respiratory factor 1 (NRF1) OTOXWNV8 NRF1_HUMAN Decreases Expression [37]
Natural cytotoxicity triggering receptor 3 ligand 1 (NCR3LG1) OT15YWU7 NR3L1_HUMAN Increases Expression [38]
PTB-containing, cubilin and LRP1-interacting protein (PID1) OT5YJ7FI PCLI1_HUMAN Increases Expression [32]
NAD-dependent protein deacetylase sirtuin-1 (SIRT1) OTAYZMOY SIR1_HUMAN Decreases Expression [37]
Angiotensin-converting enzyme 2 (ACE2) OTTRZGU7 ACE2_HUMAN Decreases Expression [31]
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) OTHCDQ22 PRGC1_HUMAN Decreases Expression [37]
Arylamine N-acetyltransferase 2 (NAT2) OTBPDQOY ARY2_HUMAN Decreases Acetylation [39]
Eosinophil peroxidase (EPX) OTFNDFOK PERE_HUMAN Increases Oxidation [40]
Myeloperoxidase (MPO) OTOOXLIN PERM_HUMAN Increases Oxidation [41]
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Increases Response To Substance [42]
Glutathione S-transferase Mu 1 (GSTM1) OTSBF2MO GSTM1_HUMAN Decreases Response To Substance [43]
------------------------------------------------------------------------------------
⏷ Show the Full List of 59 DOT(s)

Test Results of This Drug Combination in Other Disease Systems

Indication DrugCom ID Cell Line Status REF
Carcinoma DC52GNO MCF7 Investigative [44]
Colon carcinoma DCWEDQC KM12 Investigative [44]
Invasive ductal carcinoma DCYIF6I BT-549 Investigative [44]
Adenocarcinoma DCSWD66 DU-145 Investigative [1]
Adenocarcinoma DCYK8VN OVCAR3 Investigative [1]
Adult T acute lymphoblastic leukemia DCQ8L2Z MOLT-4 Investigative [1]
Astrocytoma DCYHZSK SNB-19 Investigative [1]
Glioblastoma DCI4L74 SNB-75 Investigative [1]
Glioma DCBPQ9F SF-268 Investigative [1]
High grade ovarian serous adenocarcinoma DCZZTRP OVCAR-4 Investigative [1]
High grade ovarian serous adenocarcinoma DC07G84 NCI\\/ADR-RES Investigative [1]
Non-small cell lung carcinoma DCP8TWE HOP-92 Investigative [1]
Ovarian serous cystadenocarcinoma DCQU80E SK-OV-3 Investigative [1]
Prostate carcinoma DCMRWDA PC-3 Investigative [1]
Renal cell carcinoma DCDOKSM SN12C Investigative [1]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 DrugCom(s)

References

1 Loss of function mutations in VARS encoding cytoplasmic valyl-tRNA synthetase cause microcephaly, seizures, and progressive cerebral atrophy.Hum Genet. 2018 Apr;137(4):293-303. doi: 10.1007/s00439-018-1882-3. Epub 2018 Apr 24.
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5893).
3 Isoniazid FDA Label
4 Novel agents in the management of Mycobacterium tuberculosis disease. Curr Med Chem. 2007;14(18):2000-8.
5 PLX4032 Mediated Melanoma Associated Antigen Potentiation in Patient Derived Primary Melanoma Cells. J Cancer. 2015 Oct 29;6(12):1320-30. doi: 10.7150/jca.11126. eCollection 2015.
6 Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation. EMBO J. 2016 Mar 1;35(5):462-78. doi: 10.15252/embj.201592081. Epub 2015 Dec 14.
7 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services. 2015
8 Differential effects of the oncogenic BRAF inhibitor PLX4032 (vemurafenib) and its progenitor PLX4720 on ABCB1 function. J Pharm Pharm Sci. 2014;17(1):154-68.
9 Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013 Mar 15;19(6):1458-66.
10 Vemurafenib for the treatment of melanoma. Expert Opin Pharmacother. 2012 Dec;13(17):2533-43.
11 Perturbation biology nominates upstream-downstream drug combinations in RAF inhibitor resistant melanoma cells. Elife. 2015 Aug 18;4:e04640. doi: 10.7554/eLife.04640.
12 Role of the protein kinase BRAF in the pathogenesis of endometriosis. Expert Opin Ther Targets. 2016 Aug;20(8):1017-29. doi: 10.1080/14728222.2016.1180367. Epub 2016 May 4.
13 Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b. Oncotarget. 2016 Jan 26;7(4):4428-41. doi: 10.18632/oncotarget.6599.
14 Melanoma Expressed-CD70 Is Regulated by RhoA and MAPK Pathways without Affecting Vemurafenib Treatment Activity. PLoS One. 2016 Feb 1;11(2):e0148095. doi: 10.1371/journal.pone.0148095. eCollection 2016.
15 Sustained SREBP-1-dependent lipogenesis as a key mediator of resistance to BRAF-targeted therapy. Nat Commun. 2018 Jun 27;9(1):2500. doi: 10.1038/s41467-018-04664-0.
16 MAPK and SHH pathways modulate type 3 deiodinase expression in papillary thyroid carcinoma. Endocr Relat Cancer. 2016 Mar;23(3):135-46. doi: 10.1530/ERC-15-0162.
17 Paradoxical activation of MEK/ERK signaling induced by B-Raf inhibition enhances DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells. Sci Rep. 2016 May 25;6:26803. doi: 10.1038/srep26803.
18 The BRAFT1799A mutation confers sensitivity of thyroid cancer cells to the BRAFV600E inhibitor PLX4032 (RG7204). Biochem Biophys Res Commun. 2011 Jan 28;404(4):958-62. doi: 10.1016/j.bbrc.2010.12.088. Epub 2010 Dec 23.
19 HSP70 Inhibition Limits FAK-Dependent Invasion and Enhances the Response to Melanoma Treatment with BRAF Inhibitors. Cancer Res. 2016 May 1;76(9):2720-30. doi: 10.1158/0008-5472.CAN-15-2137. Epub 2016 Mar 16.
20 Characterization of drug-specific signaling between primary human hepatocytes and immune cells. Toxicol Sci. 2017 Jul 1;158(1):76-89.
21 Diversity in enoyl-acyl carrier protein reductases. Cell Mol Life Sci. 2009 May;66(9):1507-17.
22 Inhibition of CYP2E1 catalytic activity in vitro by S-adenosyl-L-methionine. Biochem Pharmacol. 2005 Apr 1;69(7):1081-93.
23 Crystal structure of the catalase-peroxidase KatG W78F mutant from Synechococcus elongatus PCC7942 in complex with the antitubercular pro-drug isoniazid. FEBS Lett. 2015 Jan 2;589(1):131-7.
24 The actinobacterium Tsukamurella paurometabola has a functionally divergent arylamine N-acetyltransferase (NAT) homolog. World J Microbiol Biotechnol. 2019 Oct 31;35(11):174.
25 Quercetin protected against isoniazide-induced HepG2 cell apoptosis by activating the SIRT1/ERK pathway. J Biochem Mol Toxicol. 2019 Sep;33(9):e22369. doi: 10.1002/jbt.22369. Epub 2019 Jul 23.
26 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
27 Mechanism-based inactivation of human cytochrome P4502C8 by drugs in vitro. J Pharmacol Exp Ther. 2004 Dec;311(3):996-1007.
28 Determination of phospholipidosis potential based on gene expression analysis in HepG2 cells. Toxicol Sci. 2007 Mar;96(1):101-14.
29 Comparison of base-line and chemical-induced transcriptomic responses in HepaRG and RPTEC/TERT1 cells using TempO-Seq. Arch Toxicol. 2018 Aug;92(8):2517-2531.
30 Identification of differentially expressed genes in hepatic HepG2 cells treated with acetaminophen using suppression subtractive hybridization. Biol Pharm Bull. 2005 Jul;28(7):1148-53. doi: 10.1248/bpb.28.1148.
31 Effect of common medications on the expression of SARS-CoV-2 entry receptors in liver tissue. Arch Toxicol. 2020 Dec;94(12):4037-4041. doi: 10.1007/s00204-020-02869-1. Epub 2020 Aug 17.
32 An in vitro coculture system of human peripheral blood mononuclear cells with hepatocellular carcinoma-derived cells for predicting drug-induced liver injury. Arch Toxicol. 2021 Jan;95(1):149-168. doi: 10.1007/s00204-020-02882-4. Epub 2020 Aug 20.
33 Auto-oxidation of Isoniazid Leads to Isonicotinic-Lysine Adducts on Human Serum Albumin. Chem Res Toxicol. 2015 Jan 20;28(1):51-8. doi: 10.1021/tx500285k. Epub 2014 Dec 9.
34 Isoniazid-induced apoptosis in HepG2 cells: generation of oxidative stress and Bcl-2 down-regulation. Toxicol Mech Methods. 2010 Jun;20(5):242-51. doi: 10.3109/15376511003793325.
35 The Isoniazid Metabolites Hydrazine and Pyridoxal Isonicotinoyl Hydrazone Modulate Heme Biosynthesis. Toxicol Sci. 2019 Mar 1;168(1):209-224. doi: 10.1093/toxsci/kfy294.
36 Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes. Toxicol Appl Pharmacol. 2013 Dec 15;273(3):435-41. doi: 10.1016/j.taap.2013.10.005. Epub 2013 Oct 12.
37 AMPK activator acadesine fails to alleviate isoniazid-caused mitochondrial instability in HepG2 cells. J Appl Toxicol. 2017 Oct;37(10):1219-1224. doi: 10.1002/jat.3483. Epub 2017 May 29.
38 Enhanced activation of human NK cells by drug-exposed hepatocytes. Arch Toxicol. 2020 Feb;94(2):439-448. doi: 10.1007/s00204-020-02668-8. Epub 2020 Feb 14.
39 Effects of N-acetyltransferase 2 (NAT2), CYP2E1 and Glutathione-S-transferase (GST) genotypes on the serum concentrations of isoniazid and metabolites in tuberculosis patients. J Toxicol Sci. 2008 May;33(2):187-95. doi: 10.2131/jts.33.187.
40 Eosinophil peroxidase oxidizes isoniazid to form the active metabolite against M. tuberculosis, isoniazid-NAD(). Chem Biol Interact. 2019 May 25;305:48-53. doi: 10.1016/j.cbi.2019.03.019. Epub 2019 Mar 25.
41 Metabolism of isoniazid by neutrophil myeloperoxidase leads to isoniazid-NAD(+) adduct formation: A comparison of the reactivity of isoniazid with its known human metabolites. Biochem Pharmacol. 2016 Apr 15;106:46-55. doi: 10.1016/j.bcp.2016.02.003. Epub 2016 Feb 9.
42 Development of a highly sensitive cytotoxicity assay system for CYP3A4-mediated metabolic activation. Drug Metab Dispos. 2011 Aug;39(8):1388-95. doi: 10.1124/dmd.110.037077. Epub 2011 May 3.
43 Customised in vitro model to detect human metabolism-dependent idiosyncratic drug-induced liver injury. Arch Toxicol. 2018 Jan;92(1):383-399. doi: 10.1007/s00204-017-2036-4. Epub 2017 Jul 31.
44 Biologically active neutrophil chemokine pattern in tonsillitis.Clin Exp Immunol. 2004 Mar;135(3):511-8. doi: 10.1111/j.1365-2249.2003.02390.x.