General Information of Drug Combination (ID: DCF4LAK)

Drug Combination Name
Venetoclax Flavopiridol
Indication
Disease Entry Status REF
Acute Myeloid Leukemia (AML) Phase 1 [1]
Component Drugs Venetoclax   DM8I94Y Flavopiridol   DMKSUOI
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Venetoclax
Disease Entry ICD 11 Status REF
Chronic lymphocytic leukaemia 2A82.0 Approved [2]
Venetoclax Interacts with 1 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [5]
------------------------------------------------------------------------------------
Venetoclax Interacts with 11 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [6]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Activity [7]
Receptor-type tyrosine-protein kinase FLT3 (FLT3) OTMSRYMK FLT3_HUMAN Decreases Expression [8]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Cleavage [6]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Affects Folding [9]
Bcl-2-like protein 1 (BCL2L1) OTRC5K9O B2CL1_HUMAN Decreases Expression [9]
Induced myeloid leukemia cell differentiation protein Mcl-1 (MCL1) OT2YYI1A MCL1_HUMAN Decreases Expression [8]
Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1) OTXEE550 APR_HUMAN Increases Expression [9]
Bcl-2 homologous antagonist/killer (BAK1) OTDP6ILW BAK_HUMAN Affects Folding [9]
Broad substrate specificity ATP-binding cassette transporter ABCG2 (ABCG2) OTW8V2V1 ABCG2_HUMAN Affects Binding [10]
Bcl-2-binding component 3, isoforms 3/4 (BBC3) OTUAXDAY BBC3B_HUMAN Affects Response To Substance [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 DOT(s)
Indication(s) of Flavopiridol
Disease Entry ICD 11 Status REF
Acute myeloid leukaemia 2A60 Phase 2 [3]
Chronic lymphocytic leukaemia 2A82.0 Discontinued in Phase 3 [4]
Flavopiridol Interacts with 3 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Cyclin-dependent kinase 9 (CDK9) TT1LVF2 CDK9_HUMAN Inhibitor [14]
Cyclin-dependent kinase (CDK) TTMBO1Z NOUNIPROTAC Inhibitor [15]
Myophosphorylase (PYGM) TT31JXP PYGM_HUMAN Inhibitor [15]
------------------------------------------------------------------------------------
Flavopiridol Interacts with 2 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [16]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [17]
------------------------------------------------------------------------------------
Flavopiridol Interacts with 1 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
UDP-glucuronosyltransferase 1A1 (UGT1A1) DEYGVN4 UD11_HUMAN Metabolism [18]
------------------------------------------------------------------------------------
Flavopiridol Interacts with 42 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Tumor necrosis factor receptor superfamily member 10A (TNFRSF10A) OTBPCU2O TR10A_HUMAN Increases Expression [19]
Tumor necrosis factor receptor superfamily member 10B (TNFRSF10B) OTA1CPBV TR10B_HUMAN Increases Expression [19]
Baculoviral IAP repeat-containing protein 5 (BIRC5) OTILXZYL BIRC5_HUMAN Decreases Expression [13]
CASP8 and FADD-like apoptosis regulator (CFLAR) OTX14BAS CFLAR_HUMAN Decreases Expression [20]
Serine protease HTRA2, mitochondrial (HTRA2) OTC7616F HTRA2_HUMAN Affects Localization [13]
Transforming growth factor beta-1 proprotein (TGFB1) OTV5XHVH TGFB1_HUMAN Decreases Activity [21]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Decreases Expression [22]
Retinoblastoma-associated protein (RB1) OTQJUJMZ RB_HUMAN Decreases Activity [23]
Cyclin-dependent kinase 1 (CDK1) OTW1SC2N CDK1_HUMAN Decreases Activity [13]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [24]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [25]
Mast/stem cell growth factor receptor Kit (KIT) OTHUY3VZ KIT_HUMAN Decreases Expression [26]
Cyclin-dependent kinase 4 (CDK4) OT7EP05T CDK4_HUMAN Decreases Activity [13]
Proliferating cell nuclear antigen (PCNA) OTHZ1RIA PCNA_HUMAN Decreases Activity [23]
G2/mitotic-specific cyclin-B1 (CCNB1) OT19S7E5 CCNB1_HUMAN Decreases Expression [13]
Histone H2AX (H2AX) OT18UX57 H2AX_HUMAN Affects Expression [27]
High mobility group protein HMG-I/HMG-Y (HMGA1) OTQUSHPX HMGA1_HUMAN Decreases Expression [12]
G1/S-specific cyclin-D1 (CCND1) OT8HPTKJ CCND1_HUMAN Decreases Activity [23]
G1/S-specific cyclin-E1 (CCNE1) OTLD7UID CCNE1_HUMAN Decreases Expression [28]
DNA-directed RNA polymerase II subunit RPB1 (POLR2A) OTHJQ1DZ RPB1_HUMAN Decreases Expression [12]
Cyclin-dependent kinase 2 (CDK2) OTB5DYYZ CDK2_HUMAN Decreases Activity [13]
NF-kappa-B inhibitor alpha (NFKBIA) OTFT924M IKBA_HUMAN Increases Expression [29]
Retinoblastoma-like protein 1 (RBL1) OTDEBFYC RBL1_HUMAN Decreases Expression [30]
Cyclin-dependent kinase inhibitor 1 (CDKN1A) OTQWHCZE CDN1A_HUMAN Decreases Expression [28]
Signal transducer and activator of transcription 3 (STAT3) OTAAGKYZ STAT3_HUMAN Decreases Expression [12]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [31]
Cyclin-dependent kinase inhibitor 1B (CDKN1B) OTNY5LLZ CDN1B_HUMAN Increases Cleavage [32]
Tumor necrosis factor ligand superfamily member 10 (TNFSF10) OT4PXBTA TNF10_HUMAN Increases Expression [19]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Activity [24]
BH3-interacting domain death agonist (BID) OTOSHSHU BID_HUMAN Increases Cleavage [33]
Cytochrome c (CYCS) OTBFALJD CYC_HUMAN Affects Localization [24]
E3 ubiquitin-protein ligase Mdm2 (MDM2) OTOVXARF MDM2_HUMAN Decreases Expression [34]
Transcription factor E2F1 (E2F1) OTLKYBBC E2F1_HUMAN Decreases Expression [12]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [34]
Bcl-2-like protein 1 (BCL2L1) OTRC5K9O B2CL1_HUMAN Decreases Expression [13]
Induced myeloid leukemia cell differentiation protein Mcl-1 (MCL1) OT2YYI1A MCL1_HUMAN Decreases Expression [13]
Baculoviral IAP repeat-containing protein 3 (BIRC3) OT3E95KB BIRC3_HUMAN Decreases Expression [13]
Caspase-8 (CASP8) OTA8TVI8 CASP8_HUMAN Increases Cleavage [35]
BAG family molecular chaperone regulator 1 (BAG1) OTRQNIA4 BAG1_HUMAN Decreases Expression [25]
Diablo IAP-binding mitochondrial protein (DIABLO) OTHJ9MCZ DBLOH_HUMAN Affects Localization [13]
Glycogen phosphorylase, brain form (PYGB) OT2ZTJT0 PYGB_HUMAN Affects Binding [36]
Glycogen phosphorylase, liver form (PYGL) OTS1YFGR PYGL_HUMAN Affects Binding [36]
------------------------------------------------------------------------------------
⏷ Show the Full List of 42 DOT(s)

References

1 ClinicalTrials.gov (NCT03441555) A Study of Venetoclax and Alvocidib in Patients With Relapsed/Refractory Acute Myeloid Leukemia
2 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services. 2015
3 Clinical pipeline report, company report or official report of the Pharmaceutical Research and Manufacturers of America (PhRMA)
4 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5680).
5 Venclexta FDA label
6 ZCL-082, a boron-containing compound, induces apoptosis of non-Hodgkin's lymphoma via targeting p90 ribosomal S6 kinase 1/NF-B signaling pathway. Chem Biol Interact. 2022 Jan 5;351:109770. doi: 10.1016/j.cbi.2021.109770. Epub 2021 Nov 30.
7 Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nat Genet. 2015 Sep;47(9):1020-1029. doi: 10.1038/ng.3362. Epub 2015 Jul 27.
8 HSP90 Inhibitor PU-H71 in Combination with BH3-Mimetics in the Treatment of Acute Myeloid Leukemia. Curr Issues Mol Biol. 2023 Aug 23;45(9):7011-7026. doi: 10.3390/cimb45090443.
9 Superior efficacy of cotreatment with BET protein inhibitor and BCL2 or MCL1 inhibitor against AML blast progenitor cells. Blood Cancer J. 2019 Jan 15;9(2):4. doi: 10.1038/s41408-018-0165-5.
10 Prospective Drug Candidates as Human Multidrug Transporter ABCG2 Inhibitors: an In Silico Drug Discovery Study. Cell Biochem Biophys. 2021 Jun;79(2):189-200. doi: 10.1007/s12013-021-00985-y. Epub 2021 May 5.
11 Statin-induced Mitochondrial Priming Sensitizes Multiple Myeloma Cells to BCL2 and MCL-1 Inhibitors. Cancer Res Commun. 2023 Dec 8;3(12):2497-2509. doi: 10.1158/2767-9764.CRC-23-0350.
12 Phase 1 and pharmacokinetic study of bolus-infusion flavopiridol followed by cytosine arabinoside and mitoxantrone for acute leukemias. Blood. 2011 Mar 24;117(12):3302-10. doi: 10.1182/blood-2010-09-310862. Epub 2011 Jan 14.
13 Flavopiridol down-regulates antiapoptotic proteins and sensitizes human breast cancer cells to epothilone B-induced apoptosis. Cancer Res. 2003 Jan 1;63(1):93-9.
14 Clinical pipeline report, company report or official report of the Pharmaceutical Research and Manufacturers of America (PhRMA)
15 Pharma & Vaccines. Product Development Pipeline. April 29 2009.
16 The novel BCR-ABL and FLT3 inhibitor ponatinib is a potent inhibitor of the MDR-associated ATP-binding cassette transporter ABCG2. Mol Cancer Ther. 2012 Sep;11(9):2033-44.
17 Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011 Mar;63(1):157-81.
18 Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004 Nov;32(11):1201-8.
19 The cyclin-dependent kinase inhibitor flavopiridol sensitizes human hepatocellular carcinoma cells to TRAIL-induced apoptosis. Int J Mol Med. 2006 Aug;18(2):249-56.
20 Flavopiridol induces cellular FLICE-inhibitory protein degradation by the proteasome and promotes TRAIL-induced early signaling and apoptosis in breast tumor cells. Cancer Res. 2006 Sep 1;66(17):8858-69. doi: 10.1158/0008-5472.CAN-06-0808.
21 Identification and Profiling of Environmental Chemicals That Inhibit the TGF/SMAD Signaling Pathway. Chem Res Toxicol. 2019 Dec 16;32(12):2433-2444. doi: 10.1021/acs.chemrestox.9b00228. Epub 2019 Nov 11.
22 Flavopiridol induces apoptosis in chronic lymphocytic leukemia cells via activation of caspase-3 without evidence of bcl-2 modulation or dependence on functional p53. Blood. 1998 Nov 15;92(10):3804-16.
23 Flavopiridol inhibits smooth muscle cell proliferation in vitro and neointimal formation In vivo after carotid injury in the rat. Circulation. 1999 Aug 10;100(6):659-65. doi: 10.1161/01.cir.100.6.659.
24 Loss of the Bcl-2 phosphorylation loop domain is required to protect human myeloid leukemia cells from flavopiridol-mediated mitochondrial damage and apoptosis. Cancer Biol Ther. 2002 Mar-Apr;1(2):136-44. doi: 10.4161/cbt.58.
25 Transcription inhibition by flavopiridol: mechanism of chronic lymphocytic leukemia cell death. Blood. 2005 Oct 1;106(7):2513-9. doi: 10.1182/blood-2005-04-1678. Epub 2005 Jun 21.
26 Flavopiridol targets c-KIT transcription and induces apoptosis in gastrointestinal stromal tumor cells. Cancer Res. 2006 Jun 1;66(11):5858-66. doi: 10.1158/0008-5472.CAN-05-2933.
27 Flavopiridol enhances human tumor cell radiosensitivity and prolongs expression of gammaH2AX foci. Mol Cancer Ther. 2004 Apr;3(4):409-16.
28 Abrogation of p21 expression by flavopiridol enhances depsipeptide-mediated apoptosis in malignant pleural mesothelioma cells. Clin Cancer Res. 2004 Mar 1;10(5):1813-25. doi: 10.1158/1078-0432.ccr-0901-3.
29 Bortezomib and flavopiridol interact synergistically to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib mesylate through both Bcr/Abl-dependent and -independent mechanisms. Blood. 2004 Jul 15;104(2):509-18. doi: 10.1182/blood-2003-12-4121. Epub 2004 Mar 23.
30 Flavopiridol mediates cell cycle arrest and apoptosis in esophageal cancer cells. Clin Cancer Res. 1998 Nov;4(11):2885-90.
31 Flavopiridol induces apoptosis and caspase-3 activation of a newly characterized Burkitt's lymphoma cell line containing mutant p53 genes. Blood Cells Mol Dis. 2001 May-Jun;27(3):610-24. doi: 10.1006/bcmd.2001.0428.
32 Flavopiridol induces cell cycle arrest and p53-independent apoptosis in non-small cell lung cancer cell lines. Clin Cancer Res. 1999 Oct;5(10):2925-38.
33 The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in human leukemia cells (U937) through the mitochondrial rather than the receptor-mediated pathway. Cell Death Differ. 2001 Jul;8(7):715-24. doi: 10.1038/sj.cdd.4400868.
34 Flavopiridol induces apoptosis in glioma cell lines independent of retinoblastoma and p53 tumor suppressor pathway alterations by a caspase-independent pathway. Mol Cancer Ther. 2003 Feb;2(2):139-50.
35 Bcl-2 independence of flavopiridol-induced apoptosis. Mitochondrial depolarization in the absence of cytochrome c release. J Biol Chem. 2000 Oct 13;275(41):32089-97. doi: 10.1074/jbc.M005267200.
36 The cyclin-dependent kinase (CDK) inhibitor flavopiridol inhibits glycogen phosphorylase. Arch Biochem Biophys. 2001 Feb 15;386(2):179-87. doi: 10.1006/abbi.2000.2220.