General Information of Drug Off-Target (DOT) (ID: OT310QSG)

DOT Name Poly polymerase 1 (PARP1)
Synonyms
PARP-1; EC 2.4.2.30; ADP-ribosyltransferase diphtheria toxin-like 1; ARTD1; DNA ADP-ribosyltransferase PARP1; EC 2.4.2.-; NAD(+) ADP-ribosyltransferase 1; ADPRT 1; Poly synthase 1; Protein poly-ADP-ribosyltransferase PARP1; EC 2.4.2.-) polymerase 1, processed C-terminus (Poly polymerase 1, 89-kDa form); Poly polymerase 1, processed N-terminus (NT-PARP-1; Poly polymerase 1, 24-kDa form; Poly polymerase 1, 28-kDa form)]
Gene Name PARP1
UniProt ID
PARP1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1UK0 ; 1UK1 ; 1WOK ; 2COK ; 2CR9 ; 2CS2 ; 2DMJ ; 2JVN ; 2L30 ; 2L31 ; 2N8A ; 2RCW ; 2RD6 ; 2RIQ ; 3GJW ; 3GN7 ; 3L3L ; 3L3M ; 3OD8 ; 3ODA ; 3ODC ; 3ODE ; 4AV1 ; 4DQY ; 4GV7 ; 4HHY ; 4HHZ ; 4L6S ; 4OPX ; 4OQA ; 4OQB ; 4PJT ; 4R5W ; 4R6E ; 4RV6 ; 4UND ; 4UXB ; 4XHU ; 4ZZZ ; 5A00 ; 5DS3 ; 5HA9 ; 5KPN ; 5KPO ; 5KPP ; 5KPQ ; 5WRQ ; 5WRY ; 5WRZ ; 5WS0 ; 5WS1 ; 5WTC ; 5XSR ; 5XST ; 5XSU ; 6BHV ; 6GHK ; 6M3I ; 6NRF ; 6NRG ; 6NRH ; 6NRI ; 6NRJ ; 6NTU ; 6VKK ; 6VKO ; 6VKQ ; 6XVW ; 7AAA ; 7AAB ; 7AAC ; 7AAD ; 7CMW ; 7KK2 ; 7KK3 ; 7KK4 ; 7KK5 ; 7KK6 ; 7ONR ; 7ONS ; 7ONT ; 7S68 ; 7S6H ; 7S6M ; 7S81 ; 7SCY ; 7SCZ ; 8HE7
EC Number
2.4.2.-; 2.4.2.30
Pfam ID
PF00533 ; PF21728 ; PF08063 ; PF00644 ; PF02877 ; PF05406 ; PF00645
Sequence
MAESSDKLYRVEYAKSGRASCKKCSESIPKDSLRMAIMVQSPMFDGKVPHWYHFSCFWKV
GHSIRHPDVEVDGFSELRWDDQQKVKKTAEAGGVTGKGQDGIGSKAEKTLGDFAAEYAKS
NRSTCKGCMEKIEKGQVRLSKKMVDPEKPQLGMIDRWYHPGCFVKNREELGFRPEYSASQ
LKGFSLLATEDKEALKKQLPGVKSEGKRKGDEVDGVDEVAKKKSKKEKDKDSKLEKALKA
QNDLIWNIKDELKKVCSTNDLKELLIFNKQQVPSGESAILDRVADGMVFGALLPCEECSG
QLVFKSDAYYCTGDVTAWTKCMVKTQTPNRKEWVTPKEFREISYLKKLKVKKQDRIFPPE
TSASVAATPPPSTASAPAAVNSSASADKPLSNMKILTLGKLSRNKDEVKAMIEKLGGKLT
GTANKASLCISTKKEVEKMNKKMEEVKEANIRVVSEDFLQDVSASTKSLQELFLAHILSP
WGAEVKAEPVEVVAPRGKSGAALSKKSKGQVKEEGINKSEKRMKLTLKGGAAVDPDSGLE
HSAHVLEKGGKVFSATLGLVDIVKGTNSYYKLQLLEDDKENRYWIFRSWGRVGTVIGSNK
LEQMPSKEDAIEHFMKLYEEKTGNAWHSKNFTKYPKKFYPLEIDYGQDEEAVKKLTVNPG
TKSKLPKPVQDLIKMIFDVESMKKAMVEYEIDLQKMPLGKLSKRQIQAAYSILSEVQQAV
SQGSSDSQILDLSNRFYTLIPHDFGMKKPPLLNNADSVQAKVEMLDNLLDIEVAYSLLRG
GSDDSSKDPIDVNYEKLKTDIKVVDRDSEEAEIIRKYVKNTHATTHNAYDLEVIDIFKIE
REGECQRYKPFKQLHNRRLLWHGSRTTNFAGILSQGLRIAPPEAPVTGYMFGKGIYFADM
VSKSANYCHTSQGDPIGLILLGEVALGNMYELKHASHISKLPKGKHSVKGLGKTTPDPSA
NISLDGVDVPLGTGISSGVNDTSLLYNEYIVYDIAQVNLKYLLKLKFNFKTSLW
Function
Poly-ADP-ribosyltransferase that mediates poly-ADP-ribosylation of proteins and plays a key role in DNA repair. Mediates glutamate, aspartate, serine, histidine or tyrosine ADP-ribosylation of proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of target residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units. Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage. Specificity for the different amino acids is conferred by interacting factors, such as HPF1 and NMNAT1. Following interaction with HPF1, catalyzes serine ADP-ribosylation of target proteins; HPF1 confers serine specificity by completing the PARP1 active site. Also catalyzes tyrosine ADP-ribosylation of target proteins following interaction with HPF1. Following interaction with NMNAT1, catalyzes glutamate and aspartate ADP-ribosylation of target proteins; NMNAT1 confers glutamate and aspartate specificity. PARP1 initiates the repair of DNA breaks: recognizes and binds DNA breaks within chromatin and recruits HPF1, licensing serine ADP-ribosylation of target proteins, such as histones (H2BS6ADPr and H3S10ADPr), thereby promoting decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks. HPF1 initiates serine ADP-ribosylation but restricts the polymerase activity of PARP1 in order to limit the length of poly-ADP-ribose chains. In addition to base excision repair (BER) pathway, also involved in double-strand breaks (DSBs) repair: together with TIMELESS, accumulates at DNA damage sites and promotes homologous recombination repair by mediating poly-ADP-ribosylation. Mediates the poly-ADP-ribosylation of a number of proteins, including itself, APLF, CHFR, RPA1 and NFAT5. In addition to proteins, also able to ADP-ribosylate DNA: catalyzes ADP-ribosylation of DNA strand break termini containing terminal phosphates and a 2'-OH group in single- and double-stranded DNA, respectively. Required for PARP9 and DTX3L recruitment to DNA damage sites. PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites. PARP1-mediated DNA repair in neurons plays a role in sleep: senses DNA damage in neurons and promotes sleep, facilitating efficient DNA repair. In addition to DNA repair, also involved in other processes, such as transcription regulation, programmed cell death, membrane repair, adipogenesis and innate immunity. Acts as a repressor of transcription: binds to nucleosomes and modulates chromatin structure in a manner similar to histone H1, thereby altering RNA polymerase II. Acts both as a positive and negative regulator of transcription elongation, depending on the context. Acts as a positive regulator of transcription elongation by mediating poly-ADP-ribosylation of NELFE, preventing RNA-binding activity of NELFE and relieving transcription pausing. Acts as a negative regulator of transcription elongation in response to DNA damage by catalyzing poly-ADP-ribosylation of CCNT1, disrupting the phase separation activity of CCNT1 and subsequent activation of CDK9. Involved in replication fork progression following interaction with CARM1: mediates poly-ADP-ribosylation at replication forks, slowing fork progression. Poly-ADP-ribose chains generated by PARP1 also play a role in poly-ADP-ribose-dependent cell death, a process named parthanatos. Also acts as a negative regulator of the cGAS-STING pathway. Acts by mediating poly-ADP-ribosylation of CGAS: PARP1 translocates into the cytosol following phosphorylation by PRKDC and catalyzes poly-ADP-ribosylation and inactivation of CGAS. Acts as a negative regulator of adipogenesis: catalyzes poly-ADP-ribosylation of histone H2B on 'Glu-35' (H2BE35ADPr) following interaction with NMNAT1, inhibiting phosphorylation of H2B at 'Ser-36' (H2BS36ph), thereby blocking expression of pro-adipogenetic genes. Involved in the synthesis of ATP in the nucleus, together with NMNAT1, PARG and NUDT5. Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming ; [Poly [ADP-ribose] polymerase 1, processed C-terminus]: Promotes AIFM1-mediated apoptosis. This form, which translocates into the cytoplasm following cleavage by caspase-3 (CASP3) and caspase-7 (CASP7) in response to apoptosis, is auto-poly-ADP-ribosylated and serves as a poly-ADP-ribose carrier to induce AIFM1-mediated apoptosis ; [Poly [ADP-ribose] polymerase 1, processed N-terminus]: This cleavage form irreversibly binds to DNA breaks and interferes with DNA repair, promoting DNA damage-induced apoptosis.
KEGG Pathway
Base excision repair (hsa03410 )
NF-kappa B sig.ling pathway (hsa04064 )
Apoptosis (hsa04210 )
Necroptosis (hsa04217 )
Diabetic cardiomyopathy (hsa05415 )
Reactome Pathway
vRNA Synthesis (R-HSA-192814 )
Downregulation of SMAD2/3 (R-HSA-2173795 )
SUMOylation of DNA damage response and repair proteins (R-HSA-3108214 )
HDR through MMEJ (alt-NHEJ) (R-HSA-5685939 )
DNA Damage Recognition in GG-NER (R-HSA-5696394 )
Formation of Incision Complex in GG-NER (R-HSA-5696395 )
Dual Incision in GG-NER (R-HSA-5696400 )
POLB-Dependent Long Patch Base Excision Repair (R-HSA-110362 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 3 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Zalcitabine DMH7MUV Approved Poly polymerase 1 (PARP1) increases the Cardiotoxicity ADR of Zalcitabine. [98]
Floxuridine DM04LR2 Approved Poly polymerase 1 (PARP1) decreases the response to substance of Floxuridine. [99]
UCN-01 DMUNJZB Phase 2 Poly polymerase 1 (PARP1) decreases the response to substance of UCN-01. [100]
------------------------------------------------------------------------------------
This DOT Affected the Regulation of Drug Effects of 3 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Nicotinamide mononucleotide DMW1LKP Preclinical Poly polymerase 1 (PARP1) affects the abundance of Nicotinamide mononucleotide. [101]
Serotonin DMOFCRY Investigative Poly polymerase 1 (PARP1) affects the abundance of Serotonin. [102]
Nicotinamide-Adenine-Dinucleotide DM9LRKB Investigative Poly polymerase 1 (PARP1) affects the abundance of Nicotinamide-Adenine-Dinucleotide. [103]
------------------------------------------------------------------------------------
30 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Poly polymerase 1 (PARP1). [1]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Poly polymerase 1 (PARP1). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Poly polymerase 1 (PARP1). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Poly polymerase 1 (PARP1). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Poly polymerase 1 (PARP1). [5]
Cisplatin DMRHGI9 Approved Cisplatin decreases the activity of Poly polymerase 1 (PARP1). [6]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Poly polymerase 1 (PARP1). [8]
Arsenic DMTL2Y1 Approved Arsenic decreases the expression of Poly polymerase 1 (PARP1). [9]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Poly polymerase 1 (PARP1). [10]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Poly polymerase 1 (PARP1). [12]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the activity of Poly polymerase 1 (PARP1). [13]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Poly polymerase 1 (PARP1). [15]
Marinol DM70IK5 Approved Marinol decreases the expression of Poly polymerase 1 (PARP1). [18]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Poly polymerase 1 (PARP1). [19]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Poly polymerase 1 (PARP1). [20]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Poly polymerase 1 (PARP1). [21]
Folic acid DMEMBJC Approved Folic acid decreases the expression of Poly polymerase 1 (PARP1). [23]
Niclosamide DMJAGXQ Approved Niclosamide decreases the expression of Poly polymerase 1 (PARP1). [24]
Cannabidiol DM0659E Approved Cannabidiol decreases the expression of Poly polymerase 1 (PARP1). [25]
Hydroquinone DM6AVR4 Approved Hydroquinone decreases the expression of Poly polymerase 1 (PARP1). [28]
Irinotecan DMP6SC2 Approved Irinotecan increases the expression of Poly polymerase 1 (PARP1). [33]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Poly polymerase 1 (PARP1). [15]
Mitomycin DMH0ZJE Approved Mitomycin increases the activity of Poly polymerase 1 (PARP1). [38]
Sulindac DM2QHZU Approved Sulindac increases the activity of Poly polymerase 1 (PARP1). [44]
Benzatropine DMF7EXL Approved Benzatropine decreases the expression of Poly polymerase 1 (PARP1). [47]
Cholecalciferol DMGU74E Approved Cholecalciferol affects the expression of Poly polymerase 1 (PARP1). [61]
Isoproterenol DMK7MEY Approved Isoproterenol decreases the expression of Poly polymerase 1 (PARP1). [64]
Warfarin DMJYCVW Approved Warfarin increases the expression of Poly polymerase 1 (PARP1). [69]
Olaparib DM8QB1D Approved Olaparib decreases the activity of Poly polymerase 1 (PARP1). [88]
Acitretin DM8BKU9 Approved Acitretin increases the activity of Poly polymerase 1 (PARP1). [94]
------------------------------------------------------------------------------------
⏷ Show the Full List of 30 Drug(s)
68 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Estradiol DMUNTE3 Approved Estradiol increases the cleavage of Poly polymerase 1 (PARP1). [7]
Temozolomide DMKECZD Approved Temozolomide increases the cleavage of Poly polymerase 1 (PARP1). [11]
Vorinostat DMWMPD4 Approved Vorinostat increases the cleavage of Poly polymerase 1 (PARP1). [14]
Methotrexate DM2TEOL Approved Methotrexate increases the cleavage of Poly polymerase 1 (PARP1). [16]
Dexamethasone DMMWZET Approved Dexamethasone increases the cleavage of Poly polymerase 1 (PARP1). [22]
Bortezomib DMNO38U Approved Bortezomib increases the cleavage of Poly polymerase 1 (PARP1). [26]
Troglitazone DM3VFPD Approved Troglitazone increases the cleavage of Poly polymerase 1 (PARP1). [27]
Ethanol DMDRQZU Approved Ethanol increases the cleavage of Poly polymerase 1 (PARP1). [29]
Cytarabine DMZD5QR Approved Cytarabine increases the degradation of Poly polymerase 1 (PARP1). [30]
Aspirin DM672AH Approved Aspirin increases the cleavage of Poly polymerase 1 (PARP1). [31]
Etoposide DMNH3PG Approved Etoposide increases the cleavage of Poly polymerase 1 (PARP1). [32]
Paclitaxel DMLB81S Approved Paclitaxel increases the cleavage of Poly polymerase 1 (PARP1). [34]
Dasatinib DMJV2EK Approved Dasatinib increases the cleavage of Poly polymerase 1 (PARP1). [35]
DTI-015 DMXZRW0 Approved DTI-015 increases the cleavage of Poly polymerase 1 (PARP1). [36]
Indomethacin DMSC4A7 Approved Indomethacin increases the cleavage of Poly polymerase 1 (PARP1). [37]
Simvastatin DM30SGU Approved Simvastatin increases the cleavage of Poly polymerase 1 (PARP1). [39]
Topotecan DMP6G8T Approved Topotecan increases the cleavage of Poly polymerase 1 (PARP1). [40]
Gemcitabine DMSE3I7 Approved Gemcitabine increases the cleavage of Poly polymerase 1 (PARP1). [41]
Cyclophosphamide DM4O2Z7 Approved Cyclophosphamide increases the cleavage of Poly polymerase 1 (PARP1). [42]
Mifepristone DMGZQEF Approved Mifepristone increases the cleavage of Poly polymerase 1 (PARP1). [43]
Alitretinoin DMME8LH Approved Alitretinoin increases the cleavage of Poly polymerase 1 (PARP1). [46]
Methamphetamine DMPM4SK Approved Methamphetamine decreases the cleavage of Poly polymerase 1 (PARP1). [48]
Daunorubicin DMQUSBT Approved Daunorubicin increases the cleavage of Poly polymerase 1 (PARP1). [49]
Acocantherin DM7JT24 Approved Acocantherin increases the cleavage of Poly polymerase 1 (PARP1). [50]
Thalidomide DM70BU5 Approved Thalidomide increases the cleavage of Poly polymerase 1 (PARP1). [51]
Colchicine DM2POTE Approved Colchicine increases the cleavage of Poly polymerase 1 (PARP1). [52]
Enzalutamide DMGL19D Approved Enzalutamide decreases the cleavage of Poly polymerase 1 (PARP1). [53]
Sorafenib DMS8IFC Approved Sorafenib increases the cleavage of Poly polymerase 1 (PARP1). [54]
Ursodeoxycholic acid DMCUT21 Approved Ursodeoxycholic acid increases the cleavage of Poly polymerase 1 (PARP1). [55]
Gefitinib DM15F0X Approved Gefitinib increases the cleavage of Poly polymerase 1 (PARP1). [56]
Imatinib DM7RJXL Approved Imatinib increases the cleavage of Poly polymerase 1 (PARP1). [57]
Ritonavir DMU764S Approved Ritonavir increases the cleavage of Poly polymerase 1 (PARP1). [58]
Chenodiol DMQ8JIK Approved Chenodiol increases the cleavage of Poly polymerase 1 (PARP1). [59]
Docetaxel DMDI269 Approved Docetaxel increases the cleavage of Poly polymerase 1 (PARP1). [60]
Dopamine DMPGUCF Approved Dopamine increases the cleavage of Poly polymerase 1 (PARP1). [62]
Nitric Oxide DM1RBYG Approved Nitric Oxide increases the cleavage of Poly polymerase 1 (PARP1). [63]
Lovastatin DM9OZWQ Approved Lovastatin increases the cleavage of Poly polymerase 1 (PARP1). [65]
Deoxycholic acid DM3GYAL Approved Deoxycholic acid increases the cleavage of Poly polymerase 1 (PARP1). [66]
Glucosamine DM4ZLFD Approved Glucosamine increases the cleavage of Poly polymerase 1 (PARP1). [67]
Artesunate DMR27C8 Approved Artesunate increases the cleavage of Poly polymerase 1 (PARP1). [68]
Orlistat DMRJSP8 Approved Orlistat increases the cleavage of Poly polymerase 1 (PARP1). [70]
Eicosapentaenoic acid/docosa-hexaenoic acid DMMUCG4 Approved Eicosapentaenoic acid/docosa-hexaenoic acid increases the cleavage of Poly polymerase 1 (PARP1). [71]
2-deoxyglucose DMIAHVU Approved 2-deoxyglucose increases the cleavage of Poly polymerase 1 (PARP1). [72]
Dihydroxyacetone DMM1LG2 Approved Dihydroxyacetone increases the cleavage of Poly polymerase 1 (PARP1). [73]
Penicillamine DM40EF6 Approved Penicillamine increases the cleavage of Poly polymerase 1 (PARP1). [74]
Crizotinib DM4F29C Approved Crizotinib increases the cleavage of Poly polymerase 1 (PARP1). [75]
Ciprofloxacin XR DM2NLS9 Approved Ciprofloxacin XR increases the cleavage of Poly polymerase 1 (PARP1). [76]
Cantharidin DMBP5N3 Approved Cantharidin increases the cleavage of Poly polymerase 1 (PARP1). [77]
Omeprazole DM471KJ Approved Omeprazole increases the cleavage of Poly polymerase 1 (PARP1). [78]
Romidepsin DMT5GNL Approved Romidepsin increases the cleavage of Poly polymerase 1 (PARP1). [79]
Nilotinib DM7HXWT Approved Nilotinib increases the cleavage of Poly polymerase 1 (PARP1). [80]
Lapatinib DM3BH1Y Approved Lapatinib increases the cleavage of Poly polymerase 1 (PARP1). [81]
Trovafloxacin DM6AN32 Approved Trovafloxacin increases the cleavage of Poly polymerase 1 (PARP1). [82]
Busulfan DMXYJ9C Approved Busulfan increases the cleavage of Poly polymerase 1 (PARP1). [83]
Imipramine DM2NUH3 Approved Imipramine increases the cleavage of Poly polymerase 1 (PARP1). [84]
Epinephrine DM3KJBC Approved Epinephrine decreases the cleavage of Poly polymerase 1 (PARP1). [85]
Clomipramine DMINRKW Approved Clomipramine increases the cleavage of Poly polymerase 1 (PARP1). [84]
Citalopram DM2G9AE Approved Citalopram increases the cleavage of Poly polymerase 1 (PARP1). [84]
Ropivacaine DMSPJG2 Approved Ropivacaine increases the cleavage of Poly polymerase 1 (PARP1). [86]
AC220 DM8Y4JS Approved AC220 increases the cleavage of Poly polymerase 1 (PARP1). [87]
Osimertinib DMRJLAT Approved Osimertinib increases the cleavage of Poly polymerase 1 (PARP1). [89]
Pamidronate DMB4AVP Approved Pamidronate increases the cleavage of Poly polymerase 1 (PARP1). [90]
Cladribine DM3JDRP Approved Cladribine increases the cleavage of Poly polymerase 1 (PARP1). [91]
Furazolidone DM3P6V7 Approved Furazolidone increases the cleavage of Poly polymerase 1 (PARP1). [92]
Emetine DMCT2YF Approved Emetine increases the cleavage of Poly polymerase 1 (PARP1). [93]
Bendamustine hydrochloride DMFH15Z Approved Bendamustine hydrochloride increases the cleavage of Poly polymerase 1 (PARP1). [95]
Desloratadine DM56YN7 Approved Desloratadine increases the cleavage of Poly polymerase 1 (PARP1). [96]
Regorafenib DMHSY1I Approved Regorafenib increases the cleavage of Poly polymerase 1 (PARP1). [97]
------------------------------------------------------------------------------------
⏷ Show the Full List of 68 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Decitabine DMQL8XJ Approved Decitabine decreases the methylation of Poly polymerase 1 (PARP1). [17]
Capsaicin DMGMF6V Approved Capsaicin increases the ADP-ribosylation of Poly polymerase 1 (PARP1). [45]
------------------------------------------------------------------------------------

References

1 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
2 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
3 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
4 Exploring pradimicin-IRD antineoplastic mechanisms and related DNA repair pathways. Chem Biol Interact. 2023 Feb 1;371:110342. doi: 10.1016/j.cbi.2023.110342. Epub 2023 Jan 10.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Metal-based inhibition of poly(ADP-ribose) polymerase--the guardian angel of DNA. J Med Chem. 2011 Apr 14;54(7):2196-206. doi: 10.1021/jm2000135. Epub 2011 Mar 3.
7 The pro-apoptotic effect of quercetin in cancer cell lines requires ER-dependent signals. J Cell Physiol. 2012 May;227(5):1891-8. doi: 10.1002/jcp.22917.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Curcumin prevents DNA damage and enhances the repair potential in a chronically arsenic-exposed human population in West Bengal, India. Eur J Cancer Prev. 2011 Mar;20(2):123-31. doi: 10.1097/cej.0b013e328341017a.
10 Multifaceted preventive effects of single agent quercetin on a human prostate adenocarcinoma cell line (PC-3): implications for nutritional transcriptomics and multi-target therapy. Med Oncol. 2011 Dec;28(4):1395-404. doi: 10.1007/s12032-010-9603-3. Epub 2010 Jul 2.
11 LINC00511 facilitates Temozolomide resistance of glioblastoma cells via sponging miR-126-5p and activating Wnt/-catenin signaling. J Biochem Mol Toxicol. 2021 Sep;35(9):e22848. doi: 10.1002/jbt.22848. Epub 2021 Jul 30.
12 Arsenic induces cell apoptosis in cultured osteoblasts through endoplasmic reticulum stress. Toxicol Appl Pharmacol. 2009 Dec 1;241(2):173-81. doi: 10.1016/j.taap.2009.08.011. Epub 2009 Aug 18.
13 Cigarette smoke and asbestos activate poly-ADP-ribose polymerase in alveolar epithelial cells. J Investig Med. 2001 Jan;49(1):68-76. doi: 10.2310/6650.2001.34092.
14 Novel histone deacetylase inhibitors in the treatment of thyroid cancer. Clin Cancer Res. 2005 May 15;11(10):3958-65. doi: 10.1158/1078-0432.CCR-03-0776.
15 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
16 Methotrexate induces poly(ADP-ribose) polymerase-dependent, caspase 3-independent apoptosis in subsets of proliferating CD4+ T cells. Clin Exp Immunol. 2007 May;148(2):288-95. doi: 10.1111/j.1365-2249.2007.03335.x. Epub 2007 Feb 7.
17 Epigenetic mediated transcriptional activation of PARP-1 participates in silica-associated malignant transformation of human bronchial epithelial cells. Toxicol Lett. 2010 Apr 1;193(3):236-41. doi: 10.1016/j.toxlet.2010.01.017. Epub 2010 Feb 1.
18 Delta9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation. Cancer Res. 2006 Jul 1;66(13):6615-21. doi: 10.1158/0008-5472.CAN-05-4566.
19 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
20 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
21 Novel proapoptotic agent SM-1 enhances the inhibitory effect of 5-fluorouracil on colorectal cancer cells in vitro and in vivo. Oncol Lett. 2017 Jun;13(6):4762-4768. doi: 10.3892/ol.2017.6043. Epub 2017 Apr 19.
22 Glucocorticoids exert direct toxicity on microvasculature: analysis of cell death mechanisms. Toxicol Sci. 2015 Feb;143(2):441-53. doi: 10.1093/toxsci/kfu243. Epub 2014 Dec 1.
23 Higher Concentrations of Folic Acid Cause Oxidative Stress, Acute Cytotoxicity, and Long-Term Fibrogenic Changes in Kidney Epithelial Cells. Chem Res Toxicol. 2022 Nov 21;35(11):2168-2179. doi: 10.1021/acs.chemrestox.2c00258. Epub 2022 Nov 10.
24 Niclosamide induced cell apoptosis via upregulation of ATF3 and activation of PERK in Hepatocellular carcinoma cells. BMC Gastroenterol. 2016 Feb 25;16:25. doi: 10.1186/s12876-016-0442-3.
25 Cannabidiol enhances cytotoxicity of anti-cancer drugs in human head and neck squamous cell carcinoma. Sci Rep. 2020 Nov 26;10(1):20622. doi: 10.1038/s41598-020-77674-y.
26 Inhibition of p38alpha MAPK enhances proteasome inhibitor-induced apoptosis of myeloma cells by modulating Hsp27, Bcl-X(L), Mcl-1 and p53 levels in vitro and inhibits tumor growth in vivo. Leukemia. 2006 Jun;20(6):1017-27. doi: 10.1038/sj.leu.2404200.
27 The synergistic anticancer effect of troglitazone combined with aspirin causes cell cycle arrest and apoptosis in human lung cancer cells. Mol Carcinog. 2010 Mar;49(3):235-46. doi: 10.1002/mc.20593.
28 Poly(ADP-ribosyl)ation of Apoptosis Antagonizing Transcription Factor Involved in Hydroquinone-Induced DNA Damage Response. Biomed Environ Sci. 2016 Jan;29(1):80-4. doi: 10.3967/bes2016.008.
29 Ethanol enhances susceptibility to apoptotic cell death via down-regulation of autophagy-related proteins. Alcohol Clin Exp Res. 2011 Aug;35(8):1381-91. doi: 10.1111/j.1530-0277.2011.01473.x. Epub 2011 Mar 15.
30 Overexpression of Bcl-2 or Bcl-xL inhibits Ara-C-induced CPP32/Yama protease activity and apoptosis of human acute myelogenous leukemia HL-60 cells. Cancer Res. 1996 Oct 15;56(20):4743-8.
31 Aspirin induces apoptosis through release of cytochrome c from mitochondria. Neoplasia. 2000 Nov-Dec;2(6):505-13. doi: 10.1038/sj.neo.7900120.
32 p21Cip1 gene expression is modulated by Egr1: a novel regulatory mechanism involved in the resveratrol antiproliferative effect. J Biol Chem. 2003 Jun 27;278(26):23360-8. doi: 10.1074/jbc.M300771200. Epub 2003 Apr 10.
33 Sensitization of colorectal cancer to irinotecan therapy by PARP inhibitor rucaparib. Invest New Drugs. 2019 Oct;37(5):948-960. doi: 10.1007/s10637-018-00717-9. Epub 2019 Jan 5.
34 Microtubule dysfunction induced by paclitaxel initiates apoptosis through both c-Jun N-terminal kinase (JNK)-dependent and -independent pathways in ovarian cancer cells. J Biol Chem. 1999 Mar 19;274(12):8208-16. doi: 10.1074/jbc.274.12.8208.
35 Combination of arsenic trioxide and Dasatinib: a new strategy to treat Philadelphia chromosome-positive acute lymphoblastic leukaemia. J Cell Mol Med. 2018 Mar;22(3):1614-1626.
36 Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage. Carcinogenesis. 2014 Mar;35(3):692-702. doi: 10.1093/carcin/bgt366. Epub 2013 Nov 5.
37 Non-steroidal anti-inflammatory drugs induce apoptosis in gastric cancer cells through up-regulation of bax and bak. Carcinogenesis. 2001 Sep;22(9):1393-7. doi: 10.1093/carcin/22.9.1393.
38 Chloramphenicol-induced mitochondrial stress increases p21 expression and prevents cell apoptosis through a p21-dependent pathway. J Biol Chem. 2005 Jul 15;280(28):26193-9. doi: 10.1074/jbc.M501371200. Epub 2005 May 19.
39 Statin-triggered cell death in primary human lung mesenchymal cells involves p53-PUMA and release of Smac and Omi but not cytochrome c. Biochim Biophys Acta. 2010 Apr;1803(4):452-67. doi: 10.1016/j.bbamcr.2009.12.005. Epub 2010 Jan 4.
40 Effect of poly(ADP-ribose)polymerase and DNA topoisomerase I inhibitors on the p53/p63-dependent survival of carcinoma cells. Biochem Pharmacol. 2015 Apr 1;94(3):212-9. doi: 10.1016/j.bcp.2015.01.012. Epub 2015 Feb 7.
41 Role of epidermal growth factor receptor degradation in gemcitabine-mediated cytotoxicity. Oncogene. 2007 May 17;26(23):3431-9. doi: 10.1038/sj.onc.1210129. Epub 2006 Dec 4.
42 Bortezomib is synergistic with rituximab and cyclophosphamide in inducing apoptosis of mantle cell lymphoma cells in vitro and in vivo. Leukemia. 2008 Jan;22(1):179-85. doi: 10.1038/sj.leu.2404959. Epub 2007 Sep 27.
43 Effects of progesterone and anti-progestin (mifepristone) treatment on proliferation and apoptosis of the human ovarian cancer cell line, OVCAR-3. Oncol Rep. 2006 Apr;15(4):743-8.
44 Sulindac enhances adenoviral vector expressing mda-7/IL-24-mediated apoptosis in human lung cancer. Mol Cancer Ther. 2005 Feb;4(2):291-304.
45 Role of autophagy in chemoresistance: regulation of the ATM-mediated DNA-damage signaling pathway through activation of DNA-PKcs and PARP-1. Biochem Pharmacol. 2012 Mar 15;83(6):747-57. doi: 10.1016/j.bcp.2011.12.029. Epub 2011 Dec 29.
46 Co-resistance to retinoic acid and TRAIL by insertion mutagenesis into RAM. Oncogene. 2006 Jun 22;25(26):3735-44. doi: 10.1038/sj.onc.1209410. Epub 2006 Jan 30.
47 Cannabidiol Displays Proteomic Similarities to Antipsychotics in Cuprizone-Exposed Human Oligodendrocytic Cell Line MO3.13. Front Mol Neurosci. 2021 May 28;14:673144. doi: 10.3389/fnmol.2021.673144. eCollection 2021.
48 Role of PUMA in methamphetamine-induced neuronal apoptosis. Toxicol Lett. 2016 Jan 5;240(1):149-60. doi: 10.1016/j.toxlet.2015.10.020. Epub 2015 Oct 30.
49 Anthracyclines trigger apoptosis of both G0-G1 and cycling peripheral blood lymphocytes and induce massive deletion of mature T and B cells. Cancer Res. 2000 Apr 1;60(7):1901-7.
50 Ouabain, a cardiac glycoside, inhibits the Fanconi anemia/BRCA pathway activated by DNA interstrand cross-linking agents. PLoS One. 2013 Oct 4;8(10):e75905. doi: 10.1371/journal.pone.0075905. eCollection 2013.
51 Antimyeloma activity of two novel N-substituted and tetraflourinated thalidomide analogs. Leukemia. 2005 Jul;19(7):1253-61. doi: 10.1038/sj.leu.2403776.
52 Investigation of molecular mechanisms underlying the antiproliferative effects of colchicine against PC3 prostate cancer cells. Toxicol In Vitro. 2021 Jun;73:105138. doi: 10.1016/j.tiv.2021.105138. Epub 2021 Mar 6.
53 Inhibition of the erythropoietin-producing receptor EPHB4 antagonizes androgen receptor overexpression and reduces enzalutamide resistance. J Biol Chem. 2020 Apr 17;295(16):5470-5483. doi: 10.1074/jbc.RA119.011385. Epub 2020 Mar 17.
54 Synergistic activity of letrozole and sorafenib on breast cancer cells. Breast Cancer Res Treat. 2010 Nov;124(1):79-88. doi: 10.1007/s10549-009-0714-5. Epub 2010 Jan 7.
55 Lipid raft-dependent death receptor 5 (DR5) expression and activation are critical for ursodeoxycholic acid-induced apoptosis in gastric cancer cells. Carcinogenesis. 2011 May;32(5):723-31. doi: 10.1093/carcin/bgr038. Epub 2011 Feb 28.
56 Evidence of securin-mediated resistance to gefitinib-induced apoptosis in human cancer cells. Chem Biol Interact. 2013 Apr 25;203(2):412-22. doi: 10.1016/j.cbi.2013.03.011. Epub 2013 Mar 22.
57 Efficacy of the polo-like kinase inhibitor rigosertib, alone or in combination with Abelson tyrosine kinase inhibitors, against break point cluster region-c-Abelson-positive leukemia cells. Oncotarget. 2015 Aug 21;6(24):20231-40. doi: 10.18632/oncotarget.4047.
58 Ritonavir blocks AKT signaling, activates apoptosis and inhibits migration and invasion in ovarian cancer cells. Mol Cancer. 2009 Apr 22;8:26. doi: 10.1186/1476-4598-8-26.
59 Role of mitochondrial dysfunction in combined bile acid-induced cytotoxicity: the switch between apoptosis and necrosis. Toxicol Sci. 2004 May;79(1):196-204. doi: 10.1093/toxsci/kfh078. Epub 2004 Feb 19.
60 All-trans retinoic acid potentiates Taxotere-induced cell death mediated by Jun N-terminal kinase in breast cancer cells. Oncogene. 2004 Jan 15;23(2):426-33. doi: 10.1038/sj.onc.1207040.
61 Vitamin D3 induces autophagy of human myeloid leukemia cells. J Biol Chem. 2008 Sep 12;283(37):25596-25605. doi: 10.1074/jbc.M801716200. Epub 2008 Jul 15.
62 Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum Mol Genet. 2004 Aug 15;13(16):1745-54. doi: 10.1093/hmg/ddh180. Epub 2004 Jun 15.
63 Apoptotic signaling pathways induced by nitric oxide in human lymphoblastoid cells expressing wild-type or mutant p53. Cancer Res. 2004 May 1;64(9):3022-9. doi: 10.1158/0008-5472.can-03-1880.
64 Impaired PARP activity in response to the -adrenergic receptor agonist isoproterenol. Toxicol In Vitro. 2018 Aug;50:29-39. doi: 10.1016/j.tiv.2018.02.001. Epub 2018 Feb 10.
65 Lovastatin lactone elicits human lung cancer cell apoptosis via a COX-2/PPAR-dependent pathway. Oncotarget. 2016 Mar 1;7(9):10345-62. doi: 10.18632/oncotarget.7213.
66 Prevention of deoxycholate-induced gastric apoptosis by aspirin: roles of NF-kappaB and PKC signaling. J Surg Res. 2008 Mar;145(1):66-73. doi: 10.1016/j.jss.2007.04.039. Epub 2007 Jul 20.
67 Glucosamine sulfate-induced apoptosis in chronic myelogenous leukemia K562 cells is associated with translocation of cathepsin D and downregulation of Bcl-xL. Apoptosis. 2006 Oct;11(10):1851-60. doi: 10.1007/s10495-006-9529-6.
68 Artesunate induces apoptosis through caspase-dependent and -independent mitochondrial pathways in human myelodysplastic syndrome SKM-1 cells. Chem Biol Interact. 2014 Aug 5;219:28-36. doi: 10.1016/j.cbi.2014.03.011. Epub 2014 Apr 3.
69 Warfarin Blocks Gas6-Mediated Axl Activation Required for Pancreatic Cancer Epithelial Plasticity and Metastasis. Cancer Res. 2015 Sep 15;75(18):3699-705. doi: 10.1158/0008-5472.CAN-14-2887-T. Epub 2015 Jul 23.
70 Antitumoral actions of the anti-obesity drug orlistat (XenicalTM) in breast cancer cells: blockade of cell cycle progression, promotion of apoptotic cell death and PEA3-mediated transcriptional repression of Her2/neu (erbB-2) oncogene. Ann Oncol. 2005 Aug;16(8):1253-67. doi: 10.1093/annonc/mdi239. Epub 2005 May 3.
71 A novel biologically active acid stable liposomal formulation of docosahexaenoic acid in human breast cancer cell lines. Chem Biol Interact. 2016 May 25;252:1-8. doi: 10.1016/j.cbi.2016.03.035. Epub 2016 Apr 1.
72 Glycogen synthase kinase 3 regulates cell death and survival signaling in tumor cells under redox stress. Neoplasia. 2014 Sep;16(9):710-22.
73 Dihydroxyacetone induces G2/M arrest and apoptotic cell death in A375P melanoma cells. Environ Toxicol. 2018 Mar;33(3):333-342. doi: 10.1002/tox.22520. Epub 2017 Nov 29.
74 D-Penicillamine targets metastatic melanoma cells with induction of the unfolded protein response (UPR) and Noxa (PMAIP1)-dependent mitochondrial apoptosis. Apoptosis. 2012 Oct;17(10):1079-94.
75 ROS-dependent DNA damage contributes to crizotinib-induced hepatotoxicity via the apoptotic pathway. Toxicol Appl Pharmacol. 2019 Nov 15;383:114768. doi: 10.1016/j.taap.2019.114768. Epub 2019 Oct 19.
76 Ciprofloxacin mediated cell growth inhibition, S/G2-M cell cycle arrest, and apoptosis in a human transitional cell carcinoma of the bladder cell line. Clin Cancer Res. 2000 Mar;6(3):891-900.
77 Anticancer effects of cantharidin in A431 human skin cancer (Epidermoid carcinoma) cells in vitro and in vivo. Environ Toxicol. 2017 Mar;32(3):723-738. doi: 10.1002/tox.22273. Epub 2016 Apr 25.
78 Omeprazole induces apoptosis in jurkat cells. Int J Immunopathol Pharmacol. 2004 Sep-Dec;17(3):331-42. doi: 10.1177/039463200401700313.
79 Interactions between bortezomib and romidepsin and belinostat in chronic lymphocytic leukemia cells. Clin Cancer Res. 2008 Jan 15;14(2):549-58. doi: 10.1158/1078-0432.CCR-07-1934.
80 Nilotinib reduced the viability of human ovarian cancer cells via mitochondria-dependent apoptosis, independent of JNK activation. Toxicol In Vitro. 2016 Mar;31:1-11. doi: 10.1016/j.tiv.2015.11.002. Epub 2015 Nov 6.
81 CDK4/6 inhibition provides a potent adjunct to Her2-targeted therapies in preclinical breast cancer models. Genes Cancer. 2014 Jul;5(7-8):261-72. doi: 10.18632/genesandcancer.24.
82 TNF enhances trovafloxacin-induced in vitro hepatotoxicity by inhibiting protective autophagy. Toxicol Lett. 2021 May 15;342:73-84. doi: 10.1016/j.toxlet.2021.02.009. Epub 2021 Feb 17.
83 Altered gene expression in busulfan-resistant human myeloid leukemia. Leuk Res. 2008 Nov;32(11):1684-97. doi: 10.1016/j.leukres.2008.01.016. Epub 2008 Mar 12.
84 The antidepressants imipramine, clomipramine, and citalopram induce apoptosis in human acute myeloid leukemia HL-60 cells via caspase-3 activation. J Biochem Mol Toxicol. 1999;13(6):338-47. doi: 10.1002/(sici)1099-0461(1999)13:6<338::aid-jbt8>3.0.co;2-7.
85 Epinephrine facilitates the growth of T cell lymphoma by altering cell proliferation, apoptosis, and glucose metabolism. Chem Biol Interact. 2023 Jan 5;369:110278. doi: 10.1016/j.cbi.2022.110278. Epub 2022 Nov 22.
86 Ectopic expression of clusterin/apolipoprotein J or Bcl-2 decreases the sensitivity of HaCaT cells to toxic effects of ropivacaine. Cell Res. 2004 Oct;14(5):415-22. doi: 10.1038/sj.cr.7290242.
87 BET protein antagonist JQ1 is synergistically lethal with FLT3 tyrosine kinase inhibitor (TKI) and overcomes resistance to FLT3-TKI in AML cells expressing FLT-ITD. Mol Cancer Ther. 2014 Oct;13(10):2315-27. doi: 10.1158/1535-7163.MCT-14-0258. Epub 2014 Jul 22.
88 Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors. J Med Chem. 2017 Feb 23;60(4):1262-1271. doi: 10.1021/acs.jmedchem.6b00990. Epub 2016 Dec 21.
89 Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer. Oncogene. 2019 Jan;38(5):656-670. doi: 10.1038/s41388-018-0482-y. Epub 2018 Aug 31.
90 Bisphosphonates induce apoptosis in human breast cancer cell lines. Br J Cancer. 2000 Apr;82(8):1459-68. doi: 10.1054/bjoc.1999.1131.
91 2-Chlorodeoxyadenosine alone and in combination with cyclophosphamide and mitoxantrone induce apoptosis in B chronic lymphocytic leukemia cells in vivo. Cancer Detect Prev. 2004;28(6):433-42. doi: 10.1016/j.cdp.2004.08.001.
92 P21(Waf1/Cip1) plays a critical role in furazolidone-induced apoptosis in HepG2 cells through influencing the caspase-3 activation and ROS generation. Food Chem Toxicol. 2016 Feb;88:1-12. doi: 10.1016/j.fct.2015.12.004. Epub 2015 Dec 11.
93 Apoptosis induces Bcl-XS and cleaved Bcl-XL in chronic lymphocytic leukaemia. Biochem Biophys Res Commun. 2011 Feb 18;405(3):480-5. doi: 10.1016/j.bbrc.2011.01.057. Epub 2011 Jan 20.
94 Acitretin induces apoptosis through CD95 signalling pathway in human cutaneous squamous cell carcinoma cell line SCL-1. J Cell Mol Med. 2009 Sep;13(9A):2888-98. doi: 10.1111/j.1582-4934.2008.00397.x. Epub 2009 Jun 20.
95 Synergistic effects of chemotherapeutic drugs in lymphoma cells are associated with down-regulation of inhibitor of apoptosis proteins (IAPs), prostate-apoptosis-response-gene 4 (Par-4), death-associated protein (Daxx) and with enforced caspase activation. Biochem Pharmacol. 2003 Sep 1;66(5):711-24. doi: 10.1016/s0006-2952(03)00410-6.
96 Blockade of NMT1 enzymatic activity inhibits N-myristoylation of VILIP3 protein and suppresses liver cancer progression. Signal Transduct Target Ther. 2023 Jan 9;8(1):14. doi: 10.1038/s41392-022-01248-9.
97 Regorefenib induces extrinsic/intrinsic apoptosis and inhibits MAPK/NF-B-modulated tumor progression in bladder cancer in vitro and in vivo. Environ Toxicol. 2019 Jun;34(6):679-688. doi: 10.1002/tox.22734. Epub 2019 Feb 25.
98 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
99 Poly(ADP-Ribose) polymerase inhibition synergizes with 5-fluorodeoxyuridine but not 5-fluorouracil in ovarian cancer cells. Cancer Res. 2011 Jul 15;71(14):4944-54. doi: 10.1158/0008-5472.CAN-11-0814. Epub 2011 May 25.
100 The PARP inhibitor PJ34 causes a PARP1-independent, p21 dependent mitotic arrest. DNA Repair (Amst). 2011 Oct 10;10(10):1003-13. doi: 10.1016/j.dnarep.2011.07.006. Epub 2011 Aug 12.
101 Detection and pharmacological modulation of nicotinamide mononucleotide (NMN) in vitro and in vivo. Biochem Pharmacol. 2009 May 15;77(10):1612-20. doi: 10.1016/j.bcp.2009.02.017. Epub 2009 Mar 5.
102 Menstrual cycle-dependent febrile episode mediated by sequence-specific repression of poly(ADP-ribose) polymerase-1 on the transcription of the human serotonin receptor 1A gene. Hum Mutat. 2012 Jan;33(1):209-17. doi: 10.1002/humu.21622. Epub 2011 Nov 7.
103 Analyzing structure-function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa PARP1 knock-out cells. Nucleic Acids Res. 2016 Dec 1;44(21):10386-10405. doi: 10.1093/nar/gkw859. Epub 2016 Sep 29.