General Information of Drug Off-Target (DOT) (ID: OTXEE550)

DOT Name Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1)
Synonyms PMA-induced protein 1; Immediate-early-response protein APR; Protein Noxa
Gene Name PMAIP1
Related Disease
Myelodysplastic syndrome ( )
Acute lymphocytic leukaemia ( )
Acute monocytic leukemia ( )
B-cell lymphoma ( )
Breast cancer ( )
Breast carcinoma ( )
Burkitt lymphoma ( )
Cholangiocarcinoma ( )
Clear cell renal carcinoma ( )
Colorectal carcinoma ( )
Colorectal neoplasm ( )
Drug dependence ( )
Epithelial ovarian cancer ( )
Esophageal squamous cell carcinoma ( )
Head-neck squamous cell carcinoma ( )
HIV infectious disease ( )
leukaemia ( )
Leukemia ( )
Mantle cell lymphoma ( )
Matthew-Wood syndrome ( )
Neuroblastoma ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Pancreatic cancer ( )
Pancreatic tumour ( )
Plasma cell myeloma ( )
Promyelocytic leukaemia ( )
Prostate cancer ( )
Prostate carcinoma ( )
Pulmonary disease ( )
Renal cell carcinoma ( )
Small-cell lung cancer ( )
Substance abuse ( )
Substance dependence ( )
T-cell acute lymphoblastic leukaemia ( )
Transitional cell carcinoma ( )
Acute myelogenous leukaemia ( )
Coronary heart disease ( )
Hepatocellular carcinoma ( )
Non-small-cell lung cancer ( )
Obesity ( )
Triple negative breast cancer ( )
Non-insulin dependent diabetes ( )
B-cell neoplasm ( )
Lung cancer ( )
Lung carcinoma ( )
Melanoma ( )
Small lymphocytic lymphoma ( )
Stroke ( )
UniProt ID
APR_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3MQP
Pfam ID
PF15150
Sequence
MPGKKARKNAQPSPARAPAELEVECATQLRRFGDKLNFRQKLLNLISKLFCSGT
Function
Promotes activation of caspases and apoptosis. Promotes mitochondrial membrane changes and efflux of apoptogenic proteins from the mitochondria. Contributes to p53/TP53-dependent apoptosis after radiation exposure. Promotes proteasomal degradation of MCL1. Competes with BAK1 for binding to MCL1 and can displace BAK1 from its binding site on MCL1. Competes with BIM/BCL2L11 for binding to MCL1 and can displace BIM/BCL2L11 from its binding site on MCL1.
Tissue Specificity Highly expressed in adult T-cell leukemia cell line.
KEGG Pathway
Platinum drug resistance (hsa01524 )
p53 sig.ling pathway (hsa04115 )
Apoptosis (hsa04210 )
Apoptosis - multiple species (hsa04215 )
Pathways in cancer (hsa05200 )
Viral carcinogenesis (hsa05203 )
Colorectal cancer (hsa05210 )
Reactome Pathway
BH3-only proteins associate with and inactivate anti-apoptotic BCL-2 members (R-HSA-111453 )
TP53 Regulates Transcription of Genes Involved in Cytochrome C Release (R-HSA-6803204 )
Activation of NOXA and translocation to mitochondria (R-HSA-111448 )

Molecular Interaction Atlas (MIA) of This DOT

49 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Myelodysplastic syndrome DISYHNUI Definitive Biomarker [1]
Acute lymphocytic leukaemia DISPX75S Strong Altered Expression [2]
Acute monocytic leukemia DIS28NEL Strong Altered Expression [3]
B-cell lymphoma DISIH1YQ Strong Biomarker [4]
Breast cancer DIS7DPX1 Strong Altered Expression [5]
Breast carcinoma DIS2UE88 Strong Altered Expression [5]
Burkitt lymphoma DIS9D5XU Strong Biomarker [4]
Cholangiocarcinoma DIS71F6X Strong Biomarker [6]
Clear cell renal carcinoma DISBXRFJ Strong Biomarker [7]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [8]
Colorectal neoplasm DISR1UCN Strong Altered Expression [9]
Drug dependence DIS9IXRC Strong Biomarker [10]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [11]
Esophageal squamous cell carcinoma DIS5N2GV Strong Biomarker [12]
Head-neck squamous cell carcinoma DISF7P24 Strong Altered Expression [13]
HIV infectious disease DISO97HC Strong Genetic Variation [14]
leukaemia DISS7D1V Strong Biomarker [15]
Leukemia DISNAKFL Strong Biomarker [15]
Mantle cell lymphoma DISFREOV Strong Altered Expression [16]
Matthew-Wood syndrome DISA7HR7 Strong Biomarker [17]
Neuroblastoma DISVZBI4 Strong Biomarker [18]
Ovarian cancer DISZJHAP Strong Biomarker [11]
Ovarian neoplasm DISEAFTY Strong Biomarker [11]
Pancreatic cancer DISJC981 Strong Biomarker [19]
Pancreatic tumour DIS3U0LK Strong Biomarker [19]
Plasma cell myeloma DIS0DFZ0 Strong Biomarker [20]
Promyelocytic leukaemia DISYGG13 Strong Biomarker [15]
Prostate cancer DISF190Y Strong Biomarker [11]
Prostate carcinoma DISMJPLE Strong Biomarker [11]
Pulmonary disease DIS6060I Strong Biomarker [21]
Renal cell carcinoma DISQZ2X8 Strong Biomarker [7]
Small-cell lung cancer DISK3LZD Strong Altered Expression [22]
Substance abuse DIS327VW Strong Biomarker [10]
Substance dependence DISDRAAR Strong Biomarker [10]
T-cell acute lymphoblastic leukaemia DIS17AI2 Strong Altered Expression [23]
Transitional cell carcinoma DISWVVDR Strong Genetic Variation [24]
Acute myelogenous leukaemia DISCSPTN moderate Genetic Variation [1]
Coronary heart disease DIS5OIP1 moderate Genetic Variation [25]
Hepatocellular carcinoma DIS0J828 moderate Biomarker [26]
Non-small-cell lung cancer DIS5Y6R9 moderate Biomarker [27]
Obesity DIS47Y1K moderate Genetic Variation [25]
Triple negative breast cancer DISAMG6N moderate Biomarker [28]
Non-insulin dependent diabetes DISK1O5Z Disputed Biomarker [29]
B-cell neoplasm DISVY326 Limited Altered Expression [30]
Lung cancer DISCM4YA Limited Biomarker [31]
Lung carcinoma DISTR26C Limited Biomarker [31]
Melanoma DIS1RRCY Limited Genetic Variation [32]
Small lymphocytic lymphoma DIS30POX Limited Biomarker [20]
Stroke DISX6UHX Limited Altered Expression [33]
------------------------------------------------------------------------------------
⏷ Show the Full List of 49 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 3 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Fluorouracil DMUM7HZ Approved Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1) affects the response to substance of Fluorouracil. [106]
PMID26394986-Compound-22 DM43Z1G Patented Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1) increases the response to substance of PMID26394986-Compound-22. [107]
ABT-737 DML0DBV Terminated Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1) increases the response to substance of ABT-737. [108]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [34]
------------------------------------------------------------------------------------
84 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [35]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [36]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [37]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [38]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [39]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [40]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [41]
Quercetin DM3NC4M Approved Quercetin increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [42]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [43]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [44]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [45]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [46]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [47]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [48]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [49]
Marinol DM70IK5 Approved Marinol decreases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [50]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [51]
Menadione DMSJDTY Approved Menadione affects the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [45]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [52]
Cannabidiol DM0659E Approved Cannabidiol increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [53]
Bortezomib DMNO38U Approved Bortezomib decreases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [54]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [55]
Ethanol DMDRQZU Approved Ethanol increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [56]
Aspirin DM672AH Approved Aspirin increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [57]
Etoposide DMNH3PG Approved Etoposide increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [58]
Irinotecan DMP6SC2 Approved Irinotecan increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [59]
Indomethacin DMSC4A7 Approved Indomethacin increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [60]
Amphotericin B DMTAJQE Approved Amphotericin B increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [61]
Ethinyl estradiol DMODJ40 Approved Ethinyl estradiol affects the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [62]
Cidofovir DMA13GD Approved Cidofovir affects the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [40]
Simvastatin DM30SGU Approved Simvastatin increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [63]
Clodronate DM9Y6X7 Approved Clodronate decreases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [40]
Acetic Acid, Glacial DM4SJ5Y Approved Acetic Acid, Glacial increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [64]
Motexafin gadolinium DMEJKRF Approved Motexafin gadolinium increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [64]
Sorafenib DMS8IFC Approved Sorafenib decreases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [65]
Adefovir dipivoxil DMMAWY1 Approved Adefovir dipivoxil increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [40]
Nefazodone DM4ZS8M Approved Nefazodone increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [66]
Dihydroartemisinin DMBXVMZ Approved Dihydroartemisinin increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [67]
Nitric Oxide DM1RBYG Approved Nitric Oxide increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [68]
Isoproterenol DMK7MEY Approved Isoproterenol increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [69]
Gentamicin DMKINJO Approved Gentamicin increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [70]
Penicillamine DM40EF6 Approved Penicillamine increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [71]
Promethazine DM6I5GR Approved Promethazine increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [72]
Pitavastatin DMJH792 Approved Pitavastatin increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [73]
Venetoclax DM8I94Y Approved Venetoclax increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [74]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [75]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [76]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [77]
Curcumin DMQPH29 Phase 3 Curcumin increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [78]
Fenretinide DMRD5SP Phase 3 Fenretinide increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [79]
Rigosertib DMOSTXF Phase 3 Rigosertib increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [80]
MLN4924 DMP36KD Phase 3 MLN4924 affects the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [81]
Genistein DM0JETC Phase 2/3 Genistein affects the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [82]
DNCB DMDTVYC Phase 2 DNCB increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [56]
APR-246 DMNFADH Phase 2 APR-246 increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [83]
INCB057643 DMG65CV Phase 1/2 INCB057643 increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [84]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [85]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [86]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [87]
AMEP DMFELMQ Phase 1 AMEP increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [88]
AMG 176 DM0Q7NO Phase 1 AMG 176 decreases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [89]
AZD5991 DM7QGHO Phase 1 AZD5991 decreases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [89]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [90]
Eugenol DM7US1H Patented Eugenol increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [56]
Torcetrapib DMDHYM7 Discontinued in Phase 2 Torcetrapib increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [91]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [79]
MG-132 DMKA2YS Preclinical MG-132 increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [92]
Pifithrin-alpha DM63OD7 Terminated Pifithrin-alpha decreases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [93]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [94]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [95]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [96]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A decreases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [97]
Paraquat DMR8O3X Investigative Paraquat increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [98]
Glyphosate DM0AFY7 Investigative Glyphosate increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [88]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [99]
Phencyclidine DMQBEYX Investigative Phencyclidine increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [100]
Lithium chloride DMHYLQ2 Investigative Lithium chloride increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [101]
cinnamaldehyde DMZDUXG Investigative cinnamaldehyde increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [56]
Arachidonic acid DMUOQZD Investigative Arachidonic acid increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [102]
PATULIN DM0RV9C Investigative PATULIN increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [103]
Phenanthrene-9,10-dione DMG8KS9 Investigative Phenanthrene-9,10-dione increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [104]
N-(3-METHYLBUT-2-EN-1-YL)-9H-PURIN-6-AMINE DM2D4KY Investigative N-(3-METHYLBUT-2-EN-1-YL)-9H-PURIN-6-AMINE increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [105]
benzyl bromide DM857X2 Investigative benzyl bromide increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [56]
N-dodecylgallate DMV5RZM Investigative N-dodecylgallate increases the expression of Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). [56]
------------------------------------------------------------------------------------
⏷ Show the Full List of 84 Drug(s)

References

1 Synergistic effects of PRIMA-1(Met) (APR-246) and 5-azacitidine in TP53-mutated myelodysplastic syndromes and acute myeloid leukemia.Haematologica. 2020 Jun;105(6):1539-1551. doi: 10.3324/haematol.2019.218453. Epub 2019 Sep 5.
2 Therapeutic targeting of mutant p53 in pediatric acute lymphoblastic leukemia.Haematologica. 2020 Jan;105(1):170-181. doi: 10.3324/haematol.2018.199364. Epub 2019 May 9.
3 APR-246 exhibits anti-leukemic activity and synergism with conventional chemotherapeutic drugs in acute myeloid leukemia cells.Eur J Haematol. 2011 Mar;86(3):206-15. doi: 10.1111/j.1600-0609.2010.01557.x. Epub 2011 Jan 11.
4 Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas.Blood. 2007 Jan 1;109(1):271-80. doi: 10.1182/blood-2006-06-026500. Epub 2006 Sep 7.
5 Coamplification of miR-4728 protects HER2-amplified breast cancers from targeted therapy.Proc Natl Acad Sci U S A. 2018 Mar 13;115(11):E2594-E2603. doi: 10.1073/pnas.1717820115. Epub 2018 Feb 23.
6 Targeting sphingosine kinase 2 suppresses cell growth and synergizes with BCL2/BCL-XL inhibitors through NOXA-mediated MCL1 degradation in cholangiocarcinoma.Am J Cancer Res. 2019 Mar 1;9(3):546-561. eCollection 2019.
7 Targeting neddylation pathway with MLN4924 (Pevonedistat) induces NOXA-dependent apoptosis in renal cell carcinoma.Biochem Biophys Res Commun. 2017 Sep 2;490(4):1183-1188. doi: 10.1016/j.bbrc.2017.06.179. Epub 2017 Jun 29.
8 PRIMA-1met (APR-246) inhibits growth of colorectal cancer cells with different p53 status through distinct mechanisms.Oncotarget. 2015 Nov 3;6(34):36689-99. doi: 10.18632/oncotarget.5385.
9 Genomic analysis and selective small molecule inhibition identifies BCL-X(L) as a critical survival factor in a subset of colorectal cancer.Mol Cancer. 2015 Jul 2;14:126. doi: 10.1186/s12943-015-0397-y.
10 Genome wide association for addiction: replicated results and comparisons of two analytic approaches.PLoS One. 2010 Jan 21;5(1):e8832. doi: 10.1371/journal.pone.0008832.
11 Strong synergy with APR-246 and DNA-damaging drugs in primary cancer cells from patients with TP53 mutant High-Grade Serous ovarian cancer.J Ovarian Res. 2016 May 14;9(1):27. doi: 10.1186/s13048-016-0239-6.
12 Targeting the overexpressed USP7 inhibits esophageal squamous cell carcinoma cell growth by inducing NOXA-mediated apoptosis.Mol Carcinog. 2019 Jan;58(1):42-54. doi: 10.1002/mc.22905. Epub 2018 Sep 21.
13 Combination of fenretinide and ABT-263 induces apoptosis through NOXA for head and neck squamous cell carcinoma treatment.PLoS One. 2019 Jul 5;14(7):e0219398. doi: 10.1371/journal.pone.0219398. eCollection 2019.
14 HIV infection, high-risk behaviors and substance use in homeless men sheltered in therapeutic communities in Central Brazil.Int J STD AIDS. 2018 Nov;29(11):1084-1088. doi: 10.1177/0956462418767188. Epub 2018 Jun 3.
15 The putative BH3 mimetic S1 sensitizes leukemia to ABT-737 by increasing reactive oxygen species, inducing endoplasmic reticulum stress, and upregulating the BH3-only protein NOXA.Apoptosis. 2014 Jan;19(1):201-9. doi: 10.1007/s10495-013-0910-y.
16 Cotargeting of BCL2 with Venetoclax and MCL1 with S63845 Is Synthetically Lethal In Vivo in Relapsed Mantle Cell Lymphoma.Clin Cancer Res. 2019 Jul 15;25(14):4455-4465. doi: 10.1158/1078-0432.CCR-18-3275. Epub 2019 Apr 19.
17 HDAC2 mediates therapeutic resistance of pancreatic cancer cells via the BH3-only protein NOXA.Gut. 2009 Oct;58(10):1399-409. doi: 10.1136/gut.2009.180711. Epub 2009 Jun 14.
18 The anti-apoptotic protein BCL2L1/Bcl-xL is neutralized by pro-apoptotic PMAIP1/Noxa in neuroblastoma, thereby determining bortezomib sensitivity independent of prosurvival MCL1 expression. J Biol Chem. 2010 Mar 5;285(10):6904-12. doi: 10.1074/jbc.M109.038331. Epub 2010 Jan 5.
19 The PMAIP1 gene on chromosome 18 is a candidate tumor suppressor gene in human pancreatic cancer.Dig Dis Sci. 2008 Sep;53(9):2576-82. doi: 10.1007/s10620-007-0154-1. Epub 2008 Jan 31.
20 Exploiting the pro-apoptotic function of NOXA as a therapeutic modality in cancer.Expert Opin Ther Targets. 2017 Aug;21(8):767-779. doi: 10.1080/14728222.2017.1349754. Epub 2017 Jul 18.
21 Noxa/HSP27 complex delays degradation of ubiquitylated IkB in airway epithelial cells to reduce pulmonary inflammation.Mucosal Immunol. 2018 May;11(3):741-751. doi: 10.1038/mi.2017.117. Epub 2018 Jan 24.
22 Combination treatment with ABT-737 and chloroquine in preclinical models of small cell lung cancer.Mol Cancer. 2013 Mar 2;12:16. doi: 10.1186/1476-4598-12-16.
23 Enhancement of Quercetin-Induced Apoptosis by Cotreatment with Autophagy Inhibitor Is Associated with Augmentation of BAK-Dependent Mitochondrial Pathway in Jurkat T Cells.Oxid Med Cell Longev. 2019 Nov 15;2019:7989276. doi: 10.1155/2019/7989276. eCollection 2019.
24 Mutational analysis of Noxa gene in human cancers.APMIS. 2003 Jun;111(6):599-604. doi: 10.1034/j.1600-0463.2003.1110602.x.
25 The association of obesity and coronary artery disease genes with response to SSRIs treatment in major depression.J Neural Transm (Vienna). 2019 Jan;126(1):35-45. doi: 10.1007/s00702-018-01966-x. Epub 2019 Jan 4.
26 SIRT7 regulates hepatocellular carcinoma response to therapy by altering the p53-dependent cell death pathway.J Exp Clin Cancer Res. 2019 Jun 13;38(1):252. doi: 10.1186/s13046-019-1246-4.
27 TFAP2C increases cell proliferation by downregulating GADD45B and PMAIP1 in non-small cell lung cancer cells.Biol Res. 2019 Jul 11;52(1):35. doi: 10.1186/s40659-019-0244-5.
28 Histone Deacetylase Inhibitor Enhances the Efficacy of MEK Inhibitor through NOXA-Mediated MCL1 Degradation in Triple-Negative and Inflammatory Breast Cancer.Clin Cancer Res. 2017 Aug 15;23(16):4780-4792. doi: 10.1158/1078-0432.CCR-16-2622. Epub 2017 May 2.
29 Transcriptional profiles of type 2 diabetes in human skeletal muscle reveal insulin resistance, metabolic defects, apoptosis, and molecular signatures of immune activation in response to infections.Biochem Biophys Res Commun. 2017 Jan 8;482(2):282-288. doi: 10.1016/j.bbrc.2016.11.055. Epub 2016 Nov 12.
30 Anticancer Activity of Platinum (II) Complex with 2-Benzoylpyridine by Induction of DNA Damage, S-Phase Arrest, and Apoptosis.Anticancer Agents Med Chem. 2020;20(4):504-517. doi: 10.2174/1871520619666191112114340.
31 Neddylation E2 UBE2F Promotes the Survival of Lung Cancer Cells by Activating CRL5 to Degrade NOXA via the K11 Linkage.Clin Cancer Res. 2017 Feb 15;23(4):1104-1116. doi: 10.1158/1078-0432.CCR-16-1585. Epub 2016 Sep 2.
32 p53 Reactivation by PRIMA-1(Met) (APR-246) sensitises (V600E/K)BRAF melanoma to vemurafenib.Eur J Cancer. 2016 Mar;55:98-110. doi: 10.1016/j.ejca.2015.12.002. Epub 2016 Jan 17.
33 Neuronal HIF-1 and HIF-2 deficiency improves neuronal survival and sensorimotor function in the early acute phase after ischemic stroke.J Cereb Blood Flow Metab. 2017 Jan;37(1):291-306. doi: 10.1177/0271678X15624933. Epub 2016 Jan 8.
34 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
35 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
36 Comparison of the gene expression profiles of monocytic versus granulocytic lineages of HL-60 leukemia cell differentiation by DNA microarray analysis. Life Sci. 2003 Aug 15;73(13):1705-19. doi: 10.1016/s0024-3205(03)00515-0.
37 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
38 Stress via p53 pathway causes apoptosis by mitochondrial Noxa upregulation in doxorubicin-treated neuroblastoma cells. Oncogene. 2008 Jan 31;27(6):741-54. doi: 10.1038/sj.onc.1210672. Epub 2007 Aug 20.
39 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
40 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
41 Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol. 2009 Nov 1;240(3):355-66.
42 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
43 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
44 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
45 Time series analysis of oxidative stress response patterns in HepG2: a toxicogenomics approach. Toxicology. 2013 Apr 5;306:24-34.
46 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
47 Suberoylanilide hydroxamic acid (Zolinza/vorinostat) sensitizes TRAIL-resistant breast cancer cells orthotopically implanted in BALB/c nude mice. Mol Cancer Ther. 2009 Jun;8(6):1596-605. doi: 10.1158/1535-7163.MCT-08-1004. Epub 2009 Jun 9.
48 Methotrexate induces apoptosis through p53/p21-dependent pathway and increases E-cadherin expression through downregulation of HDAC/EZH2. Biochem Pharmacol. 2011 Feb 15;81(4):510-7. doi: 10.1016/j.bcp.2010.11.014. Epub 2010 Nov 27.
49 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
50 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
51 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
52 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
53 Inhibiting Heat Shock Proteins Can Potentiate the Cytotoxic Effect of Cannabidiol in Human Glioma Cells. Anticancer Res. 2015 Nov;35(11):5827-37.
54 Bortezomib and Arsenic Trioxide Activity on a Myelodysplastic Cell Line (P39): A Gene Expression Study. Turk J Haematol. 2015 Sep;32(3):206-12. doi: 10.4274/tjh.2014.0058.
55 Adipogenic Effects and Gene Expression Profiling of Firemaster? 550 Components in Human Primary Preadipocytes. Environ Health Perspect. 2017 Sep 14;125(9):097013. doi: 10.1289/EHP1318.
56 Prediction of the contact sensitizing potential of chemicals using analysis of gene expression changes in human THP-1 monocytes. Toxicol Lett. 2010 Nov 10;199(1):51-9.
57 Expression profile analysis of human peripheral blood mononuclear cells in response to aspirin. Arch Immunol Ther Exp (Warsz). 2005 Mar-Apr;53(2):151-8.
58 Essential role of caspase-8 in p53/p73-dependent apoptosis induced by etoposide in head and neck carcinoma cells. Mol Cancer. 2011 Jul 31;10:95. doi: 10.1186/1476-4598-10-95.
59 In vitro and in vivo irinotecan-induced changes in expression profiles of cell cycle and apoptosis-associated genes in acute myeloid leukemia cells. Mol Cancer Ther. 2005 Jun;4(6):885-900.
60 Anti-inflammatory agent indomethacin reduces invasion and alters metabolism in a human breast cancer cell line. Neoplasia. 2007 Mar;9(3):222-35.
61 Differential expression of microRNAs and their predicted targets in renal cells exposed to amphotericin B and its complex with copper (II) ions. Toxicol Mech Methods. 2017 Sep;27(7):537-543. doi: 10.1080/15376516.2017.1333554. Epub 2017 Jun 8.
62 The genomic response of Ishikawa cells to bisphenol A exposure is dose- and time-dependent. Toxicology. 2010 Apr 11;270(2-3):137-49. doi: 10.1016/j.tox.2010.02.008. Epub 2010 Feb 17.
63 Statin-triggered cell death in primary human lung mesenchymal cells involves p53-PUMA and release of Smac and Omi but not cytochrome c. Biochim Biophys Acta. 2010 Apr;1803(4):452-67. doi: 10.1016/j.bbamcr.2009.12.005. Epub 2010 Jan 4.
64 Motexafin gadolinium and zinc induce oxidative stress responses and apoptosis in B-cell lymphoma lines. Cancer Res. 2005 Dec 15;65(24):11676-88.
65 GSK-3beta inhibition enhances sorafenib-induced apoptosis in melanoma cell lines. J Biol Chem. 2008 Jan 11;283(2):726-32. doi: 10.1074/jbc.M705343200. Epub 2007 Nov 8.
66 Involvement of mitochondrial dysfunction in nefazodone-induced hepatotoxicity. Food Chem Toxicol. 2016 Aug;94:148-58. doi: 10.1016/j.fct.2016.06.001. Epub 2016 Jun 8.
67 The redox antimalarial dihydroartemisinin targets human metastatic melanoma cells but not primary melanocytes with induction of NOXA-dependent apoptosis. Invest New Drugs. 2012 Aug;30(4):1289-301. doi: 10.1007/s10637-011-9676-7. Epub 2011 May 6.
68 Apoptotic signaling pathways induced by nitric oxide in human lymphoblastoid cells expressing wild-type or mutant p53. Cancer Res. 2004 May 1;64(9):3022-9. doi: 10.1158/0008-5472.can-03-1880.
69 Isoproterenol effects evaluated in heart slices of human and rat in comparison to rat heart in vivo. Toxicol Appl Pharmacol. 2014 Jan 15;274(2):302-12.
70 A Quantitative Approach to Screen for Nephrotoxic Compounds In Vitro. J Am Soc Nephrol. 2016 Apr;27(4):1015-28. doi: 10.1681/ASN.2015010060. Epub 2015 Aug 10.
71 D-Penicillamine targets metastatic melanoma cells with induction of the unfolded protein response (UPR) and Noxa (PMAIP1)-dependent mitochondrial apoptosis. Apoptosis. 2012 Oct;17(10):1079-94.
72 AMPK activation induced by promethazine increases NOXA expression and Beclin-1 phosphorylation and drives autophagy-associated apoptosis in chronic myeloid leukemia. Chem Biol Interact. 2020 Jan 5;315:108888. doi: 10.1016/j.cbi.2019.108888. Epub 2019 Nov 2.
73 Statin-induced Mitochondrial Priming Sensitizes Multiple Myeloma Cells to BCL2 and MCL-1 Inhibitors. Cancer Res Commun. 2023 Dec 8;3(12):2497-2509. doi: 10.1158/2767-9764.CRC-23-0350.
74 Superior efficacy of cotreatment with BET protein inhibitor and BCL2 or MCL1 inhibitor against AML blast progenitor cells. Blood Cancer J. 2019 Jan 15;9(2):4. doi: 10.1038/s41408-018-0165-5.
75 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
76 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
77 Natural products induce a G protein-mediated calcium pathway activating p53 in cancer cells. Toxicol Appl Pharmacol. 2015 Nov 1;288(3):453-62. doi: 10.1016/j.taap.2015.08.016. Epub 2015 Sep 1.
78 Involvement of Bcl-2 family members, phosphatidylinositol 3'-kinase/AKT and mitochondrial p53 in curcumin (diferulolylmethane)-induced apoptosis in prostate cancer. Int J Oncol. 2007 Apr;30(4):905-18.
79 Role of Noxa in p53-independent fenretinide-induced apoptosis of neuroectodermal tumours. Apoptosis. 2007 Mar;12(3):613-22. doi: 10.1007/s10495-006-0020-1.
80 ON 01910.Na is selectively cytotoxic for chronic lymphocytic leukemia cells through a dual mechanism of action involving PI3K/AKT inhibition and induction of oxidative stress. Clin Cancer Res. 2012 Apr 1;18(7):1979-91. doi: 10.1158/1078-0432.CCR-11-2113. Epub 2012 Feb 20.
81 The Nedd8-activating enzyme inhibitor MLN4924 thwarts microenvironment-driven NF-B activation and induces apoptosis in chronic lymphocytic leukemia B cells. Clin Cancer Res. 2014 Mar 15;20(6):1576-89. doi: 10.1158/1078-0432.CCR-13-0987.
82 Dose- and time-dependent transcriptional response of Ishikawa cells exposed to genistein. Toxicol Sci. 2016 May;151(1):71-87.
83 Mutant p53 reactivation by PRIMA-1MET induces multiple signaling pathways converging on apoptosis. Oncogene. 2010 Mar 4;29(9):1329-38. doi: 10.1038/onc.2009.425. Epub 2009 Nov 30.
84 The synergy of the XPO1 inhibitors combined with the BET inhibitor INCB057643 in high-grade B-cell lymphoma via downregulation of MYC expression. Sci Rep. 2023 Oct 29;13(1):18554. doi: 10.1038/s41598-023-45721-z.
85 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
86 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
87 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
88 Glyphosate-based herbicides at low doses affect canonical pathways in estrogen positive and negative breast cancer cell lines. PLoS One. 2019 Jul 11;14(7):e0219610. doi: 10.1371/journal.pone.0219610. eCollection 2019.
89 Mechanisms of MCL-1 Protein Stability Induced by MCL-1 Antagonists in B-Cell Malignancies. Clin Cancer Res. 2023 Jan 17;29(2):446-457. doi: 10.1158/1078-0432.CCR-22-2088.
90 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
91 Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol. 2012 Dec 10;6:152.
92 Proteasome inhibition creates a chromatin landscape favorable to RNA Pol II processivity. J Biol Chem. 2020 Jan 31;295(5):1271-1287. doi: 10.1074/jbc.RA119.011174. Epub 2019 Dec 5.
93 Involvement of phorbol-12-myristate-13-acetate-induced protein 1 in goniothalamin-induced TP53-dependent and -independent apoptosis in hepatocellular carcinoma-derived cells. Toxicol Appl Pharmacol. 2011 Oct 1;256(1):8-23. doi: 10.1016/j.taap.2011.07.002. Epub 2011 Jul 19.
94 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
95 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
96 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
97 Probiotic Bacillus subtilis CW14 reduces disruption of the epithelial barrier and toxicity of ochratoxin A to Caco-2?cells. Food Chem Toxicol. 2019 Apr;126:25-33. doi: 10.1016/j.fct.2019.02.009. Epub 2019 Feb 11.
98 Paraquat neurotoxicity is mediated by a Bak-dependent mechanism. J Biol Chem. 2008 Feb 8;283(6):3357-3364. doi: 10.1074/jbc.M708451200. Epub 2007 Dec 4.
99 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.
100 Differential response of Mono Mac 6, BEAS-2B, and Jurkat cells to indoor dust. Environ Health Perspect. 2007 Sep;115(9):1325-32.
101 Early gene response in lithium chloride induced apoptosis. Apoptosis. 2005 Jan;10(1):75-90. doi: 10.1007/s10495-005-6063-x.
102 Arachidonic acid-induced gene expression in colon cancer cells. Carcinogenesis. 2006 Oct;27(10):1950-60.
103 Complementary cell-based high-throughput screens identify novel modulators of the unfolded protein response. J Biomol Screen. 2011 Sep;16(8):825-35. doi: 10.1177/1087057111414893. Epub 2011 Aug 15.
104 Facilitation of 9,10-phenanthrenequinone-elicited neuroblastoma cell apoptosis by NAD(P)H:quinone oxidoreductase 1. Chem Biol Interact. 2018 Jan 5;279:10-20.
105 Immediate up-regulation of the calcium-binding protein S100P and its involvement in the cytokinin-induced differentiation of human myeloid leukemia cells. Biochim Biophys Acta. 2005 Sep 10;1745(2):156-65.
106 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.
107 Differential effects of anti-apoptotic Bcl-2 family members Mcl-1, Bcl-2, and Bcl-xL on celecoxib-induced apoptosis. Biochem Pharmacol. 2010 Jan 1;79(1):10-20. doi: 10.1016/j.bcp.2009.07.021. Epub 2009 Aug 7.
108 Targeting BCL-2 family proteins to overcome drug resistance in non-small cell lung cancer. Int J Cancer. 2007 Dec 1;121(11):2387-94. doi: 10.1002/ijc.22977.