General Information of Drug Combination (ID: DCY02OX)

Drug Combination Name
Bafilomycin A1 Crizotinib
Indication
Disease Entry Status REF
Diffuse intrinsic pontine glioma Investigative [1]
Component Drugs Bafilomycin A1   DMUNK59 Crizotinib   DM4F29C
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: DIPG25
Zero Interaction Potency (ZIP) Score: 2.57
Bliss Independence Score: 6.39
Loewe Additivity Score: 1.98
LHighest Single Agent (HSA) Score: 3.8

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Bafilomycin A1
Disease Entry ICD 11 Status REF
B-cell acute lymphoblastic leukaemia 2B33.3 Investigative [2]
Bafilomycin A1 Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Vacuolar-type proton ATPase (v-ATPase) TTTK3BH NOUNIPROTAC Inhibitor [5]
------------------------------------------------------------------------------------
Bafilomycin A1 Interacts with 24 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Apoptotic protease-activating factor 1 (APAF1) OTJWIVY0 APAF_HUMAN Increases Expression [6]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Increases Expression [6]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Increases Expression [6]
Steroidogenic factor 1 (NR5A1) OTOULYR4 STF1_HUMAN Decreases Expression [7]
Nuclear factor erythroid 2-related factor 2 (NFE2L2) OT0HENJ5 NF2L2_HUMAN Increases Expression [8]
Zinc finger protein SNAI1 (SNAI1) OTDPYAMC SNAI1_HUMAN Increases Expression [4]
Albumin (ALB) OTVMM513 ALBU_HUMAN Decreases Uptake [9]
Cathepsin D (CTSD) OTQZ36F3 CATD_HUMAN Decreases Cleavage [10]
Procathepsin L (CTSL) OTYTUW29 CATL1_HUMAN Decreases Cleavage [10]
Heme oxygenase 1 (HMOX1) OTC1W6UX HMOX1_HUMAN Decreases Expression [11]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [12]
Gap junction alpha-1 protein (GJA1) OTT94MKL CXA1_HUMAN Increases Expression [13]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Decreases Activity [14]
Caspase-4 (CASP4) OTVQTV1L CASP4_HUMAN Increases Activity [15]
Microsomal triglyceride transfer protein large subunit (MTTP) OTNUVSDT MTP_HUMAN Increases Expression [16]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Decreases Activity [14]
BH3-interacting domain death agonist (BID) OTOSHSHU BID_HUMAN Increases Cleavage [17]
BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) OT4SO7J4 BNIP3_HUMAN Increases Expression [14]
Sequestosome-1 (SQSTM1) OTGY5D5J SQSTM_HUMAN Increases Expression [18]
Hypoxia-inducible factor 1-alpha (HIF1A) OTADSC03 HIF1A_HUMAN Increases Expression [14]
NACHT, LRR and PYD domains-containing protein 3 (NLRP3) OTZM6MHU NLRP3_HUMAN Increases Expression [4]
Microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B) OTUYHB84 MLP3B_HUMAN Increases Cleavage [19]
Microtubule-associated proteins 1A/1B light chain 3A (MAP1LC3A) OTPMGIU4 MLP3A_HUMAN Increases Expression [20]
Leucine-rich repeat serine/threonine-protein kinase 2 (LRRK2) OTLS7C99 LRRK2_HUMAN Increases Response To Substance [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 24 DOT(s)
Indication(s) of Crizotinib
Disease Entry ICD 11 Status REF
Non-small-cell lung cancer 2C25.Y Approved [3]
Crizotinib Interacts with 4 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Proto-oncogene c-Met (MET) TTNDSF4 MET_HUMAN Modulator [25]
ALK tyrosine kinase receptor (ALK) TTPMQSO ALK_HUMAN Modulator [25]
Proto-oncogene c-Ros (ROS1) TTSZ6Y3 ROS1_HUMAN Modulator [25]
HGF/Met signaling pathway (HGF/Met pathway) TTKA5LP NOUNIPROTAC Inhibitor [26]
------------------------------------------------------------------------------------
Crizotinib Interacts with 3 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [27]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [28]
Organic anion transporting polypeptide 1B3 (SLCO1B3) DT9C1TS SO1B3_HUMAN Substrate [28]
------------------------------------------------------------------------------------
Crizotinib Interacts with 2 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [29]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [29]
------------------------------------------------------------------------------------
Crizotinib Interacts with 45 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Increases Expression [30]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Decreases Activity [31]
Hepatocyte growth factor receptor (MET) OT7K55MU MET_HUMAN Increases Response To Substance [23]
ALK tyrosine kinase receptor (ALK) OTV3P4V8 ALK_HUMAN Decreases Response To Substance [32]
Prominin-1 (PROM1) OTBHV8NX PROM1_HUMAN Decreases Expression [22]
CD44 antigen (CD44) OT9TTJ41 CD44_HUMAN Decreases Expression [22]
Epithelial cell adhesion molecule (EPCAM) OTHBZK5X EPCAM_HUMAN Decreases Expression [22]
Cytidine deaminase (CDA) OT3HXP6N CDD_HUMAN Decreases Expression [22]
Insulin-induced gene 1 protein (INSIG1) OTZF5X1D INSI1_HUMAN Increases Expression [33]
Acyl-CoA 6-desaturase (FADS2) OTUX531P FADS2_HUMAN Increases Expression [33]
3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) OTRT3F3U HMDH_HUMAN Increases Expression [33]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [33]
Fatty acid synthase (FASN) OTFII9KG FAS_HUMAN Increases Expression [33]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Increases Activity [33]
Hydroxymethylglutaryl-CoA synthase, cytoplasmic (HMGCS1) OTCO26FV HMCS1_HUMAN Increases Expression [33]
Sterol regulatory element-binding protein 2 (SREBF2) OTBXUNPL SRBP2_HUMAN Increases Expression [33]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [33]
Acetyl-CoA carboxylase 1 (ACACA) OT5CQPZY ACACA_HUMAN Increases Phosphorylation [33]
Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C) OT6KFNMS CAC1C_HUMAN Decreases Activity [33]
Sodium channel protein type 5 subunit alpha (SCN5A) OTGYZWR6 SCN5A_HUMAN Decreases Activity [33]
Baculoviral IAP repeat-containing protein 5 (BIRC5) OTILXZYL BIRC5_HUMAN Decreases Expression [23]
Bcl-2-like protein 11 (BCL2L11) OTNQQWFJ B2L11_HUMAN Increases Expression [23]
Follitropin subunit beta (FSHB) OTGLS283 FSHB_HUMAN Decreases Secretion [34]
Lutropin subunit beta (LHB) OT5GBOVJ LSHB_HUMAN Decreases Secretion [34]
Tyrosine-protein kinase Lck (LCK) OT883FG9 LCK_HUMAN Decreases Activity [35]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [36]
Tissue factor (F3) OT3MSU3B TF_HUMAN Increases Expression [37]
Histone H2AX (H2AX) OT18UX57 H2AX_HUMAN Increases Phosphorylation [36]
Alanine aminotransferase 1 (GPT) OTOXOA0Q ALAT1_HUMAN Increases Secretion [38]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Phosphorylation [39]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Phosphorylation [39]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Phosphorylation [40]
Signal transducer and activator of transcription 3 (STAT3) OTAAGKYZ STAT3_HUMAN Decreases Phosphorylation [41]
Ras GTPase-activating-like protein IQGAP1 (IQGAP1) OTZRWTGA IQGA1_HUMAN Decreases Phosphorylation [42]
Small ribosomal subunit protein eS6 (RPS6) OTT4D1LN RS6_HUMAN Decreases Phosphorylation [41]
Baculoviral IAP repeat-containing protein 2 (BIRC2) OTFXFREP BIRC2_HUMAN Decreases Expression [23]
Caspase-8 (CASP8) OTA8TVI8 CASP8_HUMAN Increases Cleavage [43]
Echinoderm microtubule-associated protein-like 4 (EML4) OTJC45TA EMAL4_HUMAN Increases Mutagenesis [39]
Broad substrate specificity ATP-binding cassette transporter ABCG2 (ABCG2) OTW8V2V1 ABCG2_HUMAN Decreases Activity [31]
GTPase KRas (KRAS) OT78QCN8 RASK_HUMAN Decreases Response To Substance [44]
Pro-epidermal growth factor (EGF) OTANRJ0L EGF_HUMAN Decreases Response To Substance [40]
Epidermal growth factor receptor (EGFR) OTAPLO1S EGFR_HUMAN Decreases Response To Substance [44]
Mast/stem cell growth factor receptor Kit (KIT) OTHUY3VZ KIT_HUMAN Decreases Response To Substance [32]
Proheparin-binding EGF-like growth factor (HBEGF) OTLU00JS HBEGF_HUMAN Decreases Response To Substance [40]
Protransforming growth factor alpha (TGFA) OTPD1LL9 TGFA_HUMAN Decreases Response To Substance [40]
------------------------------------------------------------------------------------
⏷ Show the Full List of 45 DOT(s)

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica. 2015 Mar;100(3):345-56.
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 4903).
4 Autophagy mediates bronchial cell malignant transformation induced by chronic arsenic exposure via MEK/ERK1/2 pathway. Toxicol Lett. 2020 Oct 10;332:155-163. doi: 10.1016/j.toxlet.2020.06.006. Epub 2020 Jul 6.
5 Molecular basis of V-ATPase inhibition by bafilomycin A1. Nat Commun. 2021 Mar 19;12(1):1782.
6 Nano-sized iron particles may induce multiple pathways of cell death following generation of mistranscripted RNA in human corneal epithelial cells. Toxicol In Vitro. 2017 Aug;42:348-357.
7 Autophagy as a compensation mechanism participates in ethanol-induced fetal adrenal dysfunction in female rats. Toxicol Appl Pharmacol. 2018 Apr 15;345:36-47.
8 Vitamin D protects against particles-caused lung injury through induction of autophagy in an Nrf2-dependent manner. Environ Toxicol. 2019 May;34(5):594-609.
9 Chronic high glucose inhibits albumin reabsorption by lysosomal alkalinization in cultured porcine proximal tubular epithelial cells (LLC-PK1). Diabetes Res Clin Pract. 2006 Jun;72(3):223-30. doi: 10.1016/j.diabres.2005.10.019. Epub 2005 Nov 28.
10 Berbamine Hydrochloride inhibits lysosomal acidification by activating Nox2 to potentiate chemotherapy-induced apoptosis via the ROS-MAPK pathway in human lung carcinoma cells. Cell Biol Toxicol. 2023 Aug;39(4):1297-1317. doi: 10.1007/s10565-022-09756-8. Epub 2022 Sep 7.
11 SB202190 inhibits endothelial cell apoptosis via induction of autophagy and heme oxygenase-1. Oncotarget. 2018 May 1;9(33):23149-23163. doi: 10.18632/oncotarget.25234. eCollection 2018 May 1.
12 5-Methoxyflavanone induces cell cycle arrest at the G2/M phase, apoptosis and autophagy in HCT116 human colon cancer cells. Toxicol Appl Pharmacol. 2011 Aug 1;254(3):288-98. doi: 10.1016/j.taap.2011.05.003. Epub 2011 May 15.
13 GJA1 reverses arsenic-induced EMT via modulating MAPK/ERK signaling pathway. Toxicol Appl Pharmacol. 2022 Sep 1;450:116138. doi: 10.1016/j.taap.2022.116138. Epub 2022 Jun 21.
14 Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells. Toxicol Appl Pharmacol. 2015 Aug 15;287(1):17-25. doi: 10.1016/j.taap.2015.05.001. Epub 2015 May 14.
15 Autophagy induction by capsaicin in malignant human breast cells is modulated by p38 and extracellular signal-regulated mitogen-activated protein kinases and retards cell death by suppressing endoplasmic reticulum stress-mediated apoptosis. Mol Pharmacol. 2010 Jul;78(1):114-25. doi: 10.1124/mol.110.063495. Epub 2010 Apr 6.
16 Cadmium induces triglyceride levels via microsomal triglyceride transfer protein (MTTP) accumulation caused by lysosomal deacidification regulated by endoplasmic reticulum (ER) Ca(2+) homeostasis. Chem Biol Interact. 2021 Oct 1;348:109649. doi: 10.1016/j.cbi.2021.109649. Epub 2021 Sep 10.
17 Inhibition of cholesterol metabolism underlies synergy between mTOR pathway inhibition and chloroquine in bladder cancer cells. Oncogene. 2016 Aug 25;35(34):4518-28. doi: 10.1038/onc.2015.511. Epub 2016 Feb 8.
18 Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease. Neurosignals. 2011;19(3):163-74. doi: 10.1159/000328516. Epub 2011 Jul 22.
19 LncRNA UCA1 attenuates autophagy-dependent cell death through blocking autophagic flux under arsenic stress. Toxicol Lett. 2018 Mar 1;284:195-204. doi: 10.1016/j.toxlet.2017.12.009. Epub 2017 Dec 15.
20 Transcriptomic Landscape of Cisplatin-Resistant Neuroblastoma Cells. Cells. 2019 Mar 12;8(3):235. doi: 10.3390/cells8030235.
21 G2019S LRRK2 mutant fibroblasts from Parkinson's disease patients show increased sensitivity to neurotoxin 1-methyl-4-phenylpyridinium dependent of autophagy. Toxicology. 2014 Oct 3;324:1-9. doi: 10.1016/j.tox.2014.07.001. Epub 2014 Jul 10.
22 Enhancement of the antiproliferative activity of gemcitabine by modulation of c-Met pathway in pancreatic cancer. Curr Pharm Des. 2013;19(5):940-50.
23 Antitumor action of the MET tyrosine kinase inhibitor crizotinib (PF-02341066) in gastric cancer positive for MET amplification. Mol Cancer Ther. 2012 Jul;11(7):1557-64. doi: 10.1158/1535-7163.MCT-11-0934. Epub 2012 Jun 22.
24 Aberrant expression of the transcriptional factor Twist1 promotes invasiveness in ALK-positive anaplastic large cell lymphoma. Cell Signal. 2012 Apr;24(4):852-8. doi: 10.1016/j.cellsig.2011.11.020. Epub 2011 Dec 8.
25 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services. 2015
26 Met tyrosine kinase inhibitor, PF-2341066, suppresses growth and invasion of nasopharyngeal carcinoma.Drug Des Devel Ther. 2015 Aug 26;9:4897-907.
27 Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. Int J Cancer. 2014 Mar 15;134(6):1484-94.
28 Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013 Mar 15;19(6):1458-66.
29 Crizotinib for the treatment of non-small-cell lung cancer. Am J Health Syst Pharm. 2013 Jun 1;70(11):943-7.
30 Prediction of crizotinib-midazolam interaction using the Simcyp population-based simulator: comparison of CYP3A time-dependent inhibition between human liver microsomes versus hepatocytes. Drug Metab Dispos. 2013 Feb;41(2):343-52.
31 Editor's Highlight: PlacentalDisposition and Effects of Crizotinib: An Ex Vivo Study in the Isolated Dual-Side Perfused Human Cotyledon. Toxicol Sci. 2017 Jun 1;157(2):500-509. doi: 10.1093/toxsci/kfx063.
32 Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med. 2012 Feb 8;4(120):120ra17. doi: 10.1126/scitranslmed.3003316. Epub 2012 Jan 25.
33 Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes. Toxicol Appl Pharmacol. 2013 Oct 1;272(1):245-55.
34 Rapid-onset hypogonadism secondary to crizotinib use in men with metastatic nonsmall cell lung cancer. Cancer. 2012 Nov 1;118(21):5302-9. doi: 10.1002/cncr.27450. Epub 2012 Apr 4.
35 Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem. 2011 Sep 22;54(18):6342-63. doi: 10.1021/jm2007613. Epub 2011 Aug 18.
36 ROS-dependent DNA damage contributes to crizotinib-induced hepatotoxicity via the apoptotic pathway. Toxicol Appl Pharmacol. 2019 Nov 15;383:114768. doi: 10.1016/j.taap.2019.114768. Epub 2019 Oct 19.
37 Elucidating mechanisms of toxicity using phenotypic data from primary human cell systems--a chemical biology approach for thrombosis-related side effects. Int J Mol Sci. 2015 Jan 5;16(1):1008-29. doi: 10.3390/ijms16011008.
38 Cytotoxicity of 34 FDA approved small-molecule kinase inhibitors in primary rat and human hepatocytes. Toxicol Lett. 2018 Jul;291:138-148. doi: 10.1016/j.toxlet.2018.04.010. Epub 2018 Apr 12.
39 Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc Natl Acad Sci U S A. 2011 May 3;108(18):7535-40. doi: 10.1073/pnas.1019559108. Epub 2011 Apr 18.
40 Paracrine receptor activation by microenvironment triggers bypass survival signals and ALK inhibitor resistance in EML4-ALK lung cancer cells. Clin Cancer Res. 2012 Jul 1;18(13):3592-602. doi: 10.1158/1078-0432.CCR-11-2972. Epub 2012 May 2.
41 Crizotinib-resistant mutants of EML4-ALK identified through an accelerated mutagenesis screen. Chem Biol Drug Des. 2011 Dec;78(6):999-1005. doi: 10.1111/j.1747-0285.2011.01239.x. Epub 2011 Oct 31.
42 Tyrosine phosphorylation of the scaffold protein IQGAP1 in the MET pathway alters function. J Biol Chem. 2020 Dec 25;295(52):18105-18121. doi: 10.1074/jbc.RA120.015891. Epub 2020 Oct 21.
43 Keratinocytes apoptosis contributes to crizotinib induced-erythroderma. Toxicol Lett. 2020 Feb 1;319:102-110. doi: 10.1016/j.toxlet.2019.11.007. Epub 2019 Nov 7.
44 Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res. 2012 Mar 1;18(5):1472-82. doi: 10.1158/1078-0432.CCR-11-2906. Epub 2012 Jan 10.