General Information of Drug Off-Target (DOT) (ID: OTDPYAMC)

DOT Name Zinc finger protein SNAI1 (SNAI1)
Synonyms Protein snail homolog 1; Protein sna
Gene Name SNAI1
Related Disease
Carcinoma ( )
Lung adenocarcinoma ( )
Lung cancer ( )
Metastatic malignant neoplasm ( )
Ovarian neoplasm ( )
Pancreatic cancer ( )
Acute myelogenous leukaemia ( )
Advanced cancer ( )
Amyotrophic lateral sclerosis type 1 ( )
Bladder cancer ( )
Bone osteosarcoma ( )
Breast cancer ( )
Breast carcinoma ( )
Breast neoplasm ( )
Cholestasis ( )
Colon cancer ( )
Colon carcinoma ( )
Colonic neoplasm ( )
Colorectal carcinoma ( )
Colorectal neoplasm ( )
Ductal breast carcinoma in situ ( )
Epithelial ovarian cancer ( )
Esophageal squamous cell carcinoma ( )
Familial amyotrophic lateral sclerosis ( )
Glioma ( )
High blood pressure ( )
Melanoma ( )
Neoplasm ( )
Non-small-cell lung cancer ( )
Osteosarcoma ( )
Ovarian cancer ( )
Squamous cell carcinoma ( )
Thyroid gland papillary carcinoma ( )
Type-1/2 diabetes ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Prostate carcinoma ( )
Adult glioblastoma ( )
Prostate cancer ( )
Clear cell renal carcinoma ( )
Gastric neoplasm ( )
Glioblastoma multiforme ( )
Hereditary diffuse gastric adenocarcinoma ( )
Lung carcinoma ( )
Renal fibrosis ( )
UniProt ID
SNAI1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2Y48; 3W5K; 3ZMT; 4QLI
Pfam ID
PF00096 ; PF13912
Sequence
MPRSFLVRKPSDPNRKPNYSELQDSNPEFTFQQPYDQAHLLAAIPPPEILNPTASLPMLI
WDSVLAPQAQPIAWASLRLQESPRVAELTSLSDEDSGKGSQPPSPPSPAPSSFSSTSVSS
LEAEAYAAFPGLGQVPKQLAQLSEAKDLQARKAFNCKYCNKEYLSLGALKMHIRSHTLPC
VCGTCGKAFSRPWLLQGHVRTHTGEKPFSCPHCSRAFADRSNLRAHLQTHSDVKKYQCQA
CARTFSRMSLLHKHQESGCSGCPR
Function
Involved in induction of the epithelial to mesenchymal transition (EMT), formation and maintenance of embryonic mesoderm, growth arrest, survival and cell migration. Binds to 3 E-boxes of the E-cadherin/CDH1 gene promoter and to the promoters of CLDN7 and KRT8 and, in association with histone demethylase KDM1A which it recruits to the promoters, causes a decrease in dimethylated H3K4 levels and represses transcription. The N-terminal SNAG domain competes with histone H3 for the same binding site on the histone demethylase complex formed by KDM1A and RCOR1, and thereby inhibits demethylation of histone H3 at 'Lys-4' (in vitro). During EMT, involved with LOXL2 in negatively regulating pericentromeric heterochromatin transcription. SNAI1 recruits LOXL2 to pericentromeric regions to oxidize histone H3 and repress transcription which leads to release of heterochromatin component CBX5/HP1A, enabling chromatin reorganization and acquisition of mesenchymal traits. Associates with EGR1 and SP1 to mediate tetradecanoyl phorbol acetate (TPA)-induced up-regulation of CDKN2B, possibly by binding to the CDKN2B promoter region 5'-TCACA-3. In addition, may also activate the CDKN2B promoter by itself.
Tissue Specificity Expressed in a variety of tissues with the highest expression in kidney. Expressed in mesenchymal and epithelial cell lines.
KEGG Pathway
Adherens junction (hsa04520 )
Reactome Pathway
Epithelial-Mesenchymal Transition (EMT) during gastrulation (R-HSA-9758919 )
Regulation of CDH11 gene transcription (R-HSA-9762293 )
Regulation of PTEN gene transcription (R-HSA-8943724 )

Molecular Interaction Atlas (MIA) of This DOT

45 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Carcinoma DISH9F1N Definitive Altered Expression [1]
Lung adenocarcinoma DISD51WR Definitive Altered Expression [2]
Lung cancer DISCM4YA Definitive Biomarker [3]
Metastatic malignant neoplasm DIS86UK6 Definitive Biomarker [4]
Ovarian neoplasm DISEAFTY Definitive Genetic Variation [5]
Pancreatic cancer DISJC981 Definitive Altered Expression [6]
Acute myelogenous leukaemia DISCSPTN Strong Biomarker [7]
Advanced cancer DISAT1Z9 Strong Biomarker [8]
Amyotrophic lateral sclerosis type 1 DIS5A2M0 Strong Biomarker [9]
Bladder cancer DISUHNM0 Strong Altered Expression [10]
Bone osteosarcoma DIST1004 Strong Altered Expression [11]
Breast cancer DIS7DPX1 Strong Biomarker [12]
Breast carcinoma DIS2UE88 Strong Biomarker [12]
Breast neoplasm DISNGJLM Strong Biomarker [13]
Cholestasis DISDJJWE Strong Biomarker [14]
Colon cancer DISVC52G Strong Altered Expression [15]
Colon carcinoma DISJYKUO Strong Altered Expression [15]
Colonic neoplasm DISSZ04P Strong Biomarker [16]
Colorectal carcinoma DIS5PYL0 Strong Altered Expression [17]
Colorectal neoplasm DISR1UCN Strong Altered Expression [18]
Ductal breast carcinoma in situ DISLCJY7 Strong Genetic Variation [19]
Epithelial ovarian cancer DIS56MH2 Strong Altered Expression [20]
Esophageal squamous cell carcinoma DIS5N2GV Strong Biomarker [21]
Familial amyotrophic lateral sclerosis DISWZ9CJ Strong Biomarker [9]
Glioma DIS5RPEH Strong Altered Expression [22]
High blood pressure DISY2OHH Strong Biomarker [23]
Melanoma DIS1RRCY Strong Biomarker [24]
Neoplasm DISZKGEW Strong Altered Expression [25]
Non-small-cell lung cancer DIS5Y6R9 Strong Altered Expression [26]
Osteosarcoma DISLQ7E2 Strong Altered Expression [11]
Ovarian cancer DISZJHAP Strong Altered Expression [20]
Squamous cell carcinoma DISQVIFL Strong Biomarker [27]
Thyroid gland papillary carcinoma DIS48YMM Strong Altered Expression [28]
Type-1/2 diabetes DISIUHAP Strong Genetic Variation [29]
Urinary bladder cancer DISDV4T7 Strong Altered Expression [10]
Urinary bladder neoplasm DIS7HACE Strong Altered Expression [10]
Prostate carcinoma DISMJPLE moderate Altered Expression [30]
Adult glioblastoma DISVP4LU Disputed Biomarker [31]
Prostate cancer DISF190Y Disputed Altered Expression [30]
Clear cell renal carcinoma DISBXRFJ Limited Biomarker [32]
Gastric neoplasm DISOKN4Y Limited Biomarker [33]
Glioblastoma multiforme DISK8246 Limited Biomarker [34]
Hereditary diffuse gastric adenocarcinoma DISUIBYS Limited Biomarker [33]
Lung carcinoma DISTR26C Limited Biomarker [3]
Renal fibrosis DISMHI3I Limited Altered Expression [35]
------------------------------------------------------------------------------------
⏷ Show the Full List of 45 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Lapatinib DM3BH1Y Approved Zinc finger protein SNAI1 (SNAI1) decreases the response to substance of Lapatinib. [96]
------------------------------------------------------------------------------------
60 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Zinc finger protein SNAI1 (SNAI1). [36]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Zinc finger protein SNAI1 (SNAI1). [37]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Zinc finger protein SNAI1 (SNAI1). [38]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Zinc finger protein SNAI1 (SNAI1). [39]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Zinc finger protein SNAI1 (SNAI1). [40]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Zinc finger protein SNAI1 (SNAI1). [41]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Zinc finger protein SNAI1 (SNAI1). [42]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the expression of Zinc finger protein SNAI1 (SNAI1). [43]
Triclosan DMZUR4N Approved Triclosan increases the expression of Zinc finger protein SNAI1 (SNAI1). [44]
Decitabine DMQL8XJ Approved Decitabine increases the expression of Zinc finger protein SNAI1 (SNAI1). [33]
Menadione DMSJDTY Approved Menadione decreases the expression of Zinc finger protein SNAI1 (SNAI1). [46]
Fulvestrant DM0YZC6 Approved Fulvestrant increases the expression of Zinc finger protein SNAI1 (SNAI1). [47]
Dexamethasone DMMWZET Approved Dexamethasone decreases the expression of Zinc finger protein SNAI1 (SNAI1). [48]
Niclosamide DMJAGXQ Approved Niclosamide decreases the expression of Zinc finger protein SNAI1 (SNAI1). [49]
Nicotine DMWX5CO Approved Nicotine increases the expression of Zinc finger protein SNAI1 (SNAI1). [50]
Acocantherin DM7JT24 Approved Acocantherin decreases the expression of Zinc finger protein SNAI1 (SNAI1). [51]
Tacrolimus DMZ7XNQ Approved Tacrolimus increases the expression of Zinc finger protein SNAI1 (SNAI1). [52]
Ciprofloxacin XR DM2NLS9 Approved Ciprofloxacin XR decreases the expression of Zinc finger protein SNAI1 (SNAI1). [53]
Sanguinarine DMDINFS Approved Sanguinarine decreases the expression of Zinc finger protein SNAI1 (SNAI1). [54]
Ketamine DMT5HA4 Approved Ketamine increases the expression of Zinc finger protein SNAI1 (SNAI1). [55]
Aldosterone DM9S2JW Approved Aldosterone increases the expression of Zinc finger protein SNAI1 (SNAI1). [56]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Zinc finger protein SNAI1 (SNAI1). [57]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Zinc finger protein SNAI1 (SNAI1). [58]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of Zinc finger protein SNAI1 (SNAI1). [59]
HMPL-004 DM29XGY Phase 3 HMPL-004 decreases the expression of Zinc finger protein SNAI1 (SNAI1). [60]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone decreases the expression of Zinc finger protein SNAI1 (SNAI1). [61]
Thymoquinone DMVDTR2 Phase 2/3 Thymoquinone decreases the expression of Zinc finger protein SNAI1 (SNAI1). [62]
DNCB DMDTVYC Phase 2 DNCB increases the expression of Zinc finger protein SNAI1 (SNAI1). [63]
phorbol 12-myristate 13-acetate DMJWD62 Phase 2 phorbol 12-myristate 13-acetate increases the expression of Zinc finger protein SNAI1 (SNAI1). [64]
Delphinidin DMS2WIN Phase 2 Delphinidin decreases the expression of Zinc finger protein SNAI1 (SNAI1). [65]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the mutagenesis of Zinc finger protein SNAI1 (SNAI1). [66]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Zinc finger protein SNAI1 (SNAI1). [67]
LY294002 DMY1AFS Phase 1 LY294002 decreases the expression of Zinc finger protein SNAI1 (SNAI1). [69]
Tetrandrine DMAOJBX Phase 1 Tetrandrine decreases the expression of Zinc finger protein SNAI1 (SNAI1). [70]
Acteoside DM0YHKB Terminated Acteoside decreases the expression of Zinc finger protein SNAI1 (SNAI1). [72]
EMBELIN DMFZO4Y Terminated EMBELIN decreases the expression of Zinc finger protein SNAI1 (SNAI1). [73]
Pifithrin-alpha DM63OD7 Terminated Pifithrin-alpha increases the expression of Zinc finger protein SNAI1 (SNAI1). [74]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Zinc finger protein SNAI1 (SNAI1). [75]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of Zinc finger protein SNAI1 (SNAI1). [76]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Zinc finger protein SNAI1 (SNAI1). [77]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Zinc finger protein SNAI1 (SNAI1). [78]
Deguelin DMXT7WG Investigative Deguelin decreases the expression of Zinc finger protein SNAI1 (SNAI1). [79]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of Zinc finger protein SNAI1 (SNAI1). [80]
D-glucose DMMG2TO Investigative D-glucose increases the expression of Zinc finger protein SNAI1 (SNAI1). [81]
Phencyclidine DMQBEYX Investigative Phencyclidine decreases the expression of Zinc finger protein SNAI1 (SNAI1). [82]
Forskolin DM6ITNG Investigative Forskolin decreases the expression of Zinc finger protein SNAI1 (SNAI1). [84]
Rapamycin Immunosuppressant Drug DM678IB Investigative Rapamycin Immunosuppressant Drug increases the expression of Zinc finger protein SNAI1 (SNAI1). [85]
Microcystin-LR DMTMLRN Investigative Microcystin-LR increases the expression of Zinc finger protein SNAI1 (SNAI1). [86]
Cordycepin DM72Y01 Investigative Cordycepin decreases the expression of Zinc finger protein SNAI1 (SNAI1). [87]
Chrysin DM7V2LG Investigative Chrysin decreases the expression of Zinc finger protein SNAI1 (SNAI1). [88]
AM251 DMTAWHL Investigative AM251 decreases the expression of Zinc finger protein SNAI1 (SNAI1). [89]
(E)-4-(3,5-dimethoxystyryl)phenol DMYXI2V Investigative (E)-4-(3,5-dimethoxystyryl)phenol decreases the expression of Zinc finger protein SNAI1 (SNAI1). [69]
MANGIFERIN DMWAF5Z Investigative MANGIFERIN decreases the expression of Zinc finger protein SNAI1 (SNAI1). [90]
Tetramethylbutylphenol DMW9CH2 Investigative Tetramethylbutylphenol increases the expression of Zinc finger protein SNAI1 (SNAI1). [91]
Isoarnebin 4 DM0B7NO Investigative Isoarnebin 4 decreases the expression of Zinc finger protein SNAI1 (SNAI1). [92]
NMS-873 DMYKZ6U Investigative NMS-873 decreases the expression of Zinc finger protein SNAI1 (SNAI1). [93]
HONOKIOL DMJWT3X Investigative HONOKIOL decreases the expression of Zinc finger protein SNAI1 (SNAI1). [94]
Bafilomycin A1 DMUNK59 Investigative Bafilomycin A1 increases the expression of Zinc finger protein SNAI1 (SNAI1). [95]
TRISMETHOXYRESVERATROL DM6USPC Investigative TRISMETHOXYRESVERATROL decreases the expression of Zinc finger protein SNAI1 (SNAI1). [69]
SB216763 DMIYFQ5 Investigative SB216763 increases the expression of Zinc finger protein SNAI1 (SNAI1). [69]
------------------------------------------------------------------------------------
⏷ Show the Full List of 60 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Zinc finger protein SNAI1 (SNAI1). [68]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID26394986-Compound-22 DM43Z1G Patented PMID26394986-Compound-22 affects the localization of Zinc finger protein SNAI1 (SNAI1). [71]
Lithium chloride DMHYLQ2 Investigative Lithium chloride decreases the degradation of Zinc finger protein SNAI1 (SNAI1). [83]
------------------------------------------------------------------------------------

References

1 MUC1 drives epithelial-mesenchymal transition in renal carcinoma through Wnt/-catenin pathway and interaction with SNAIL promoter.Cancer Lett. 2014 May 1;346(2):225-36. doi: 10.1016/j.canlet.2013.12.029. Epub 2013 Dec 30.
2 COP9 signalosome subunit 5 regulates cancer metastasis by deubiquitinating SNAIL.Oncotarget. 2018 Apr 17;9(29):20670-20680. doi: 10.18632/oncotarget.25060. eCollection 2018 Apr 17.
3 Snail1-dependent cancer-associated fibroblasts induce epithelial-mesenchymal transition in lung cancer cells via exosomes.QJM. 2019 Aug 1;112(8):581-590. doi: 10.1093/qjmed/hcz093.
4 Novel role of Snail 1 in promoting tumor neoangiogenesis.Biosci Rep. 2019 May 10;39(5):BSR20182161. doi: 10.1042/BSR20182161. Print 2019 May 31.
5 Associations of genewide SNPs in SNAI1 and TWIST1 with breast cancer and ovarian cancer susceptibility among Chinese Han women.Oncol Rep. 2018 Dec;40(6):3573-3584. doi: 10.3892/or.2018.6725. Epub 2018 Sep 21.
6 LKB1 obliterates Snail stability and inhibits pancreatic cancer metastasis in response to metformin treatment.Cancer Sci. 2018 May;109(5):1382-1392. doi: 10.1111/cas.13591.
7 Wheat Germ Agglutinin as a Potential Therapeutic Agent for Leukemia.Front Oncol. 2019 Feb 21;9:100. doi: 10.3389/fonc.2019.00100. eCollection 2019.
8 Control of the Epithelial-to-Mesenchymal Transition and Cancer Metastasis by Autophagy-Dependent SNAI1 Degradation.Cells. 2019 Feb 6;8(2):129. doi: 10.3390/cells8020129.
9 Differential expression of inflammation- and apoptosis-related genes in spinal cords of a mutant SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis.J Neurochem. 2002 Jan;80(1):158-67. doi: 10.1046/j.0022-3042.2001.00683.x.
10 Upregulation of lncRNA snoRNA host gene 6 regulates NUAK family SnF1-like kinase-1 expression by competitively binding microRNA-125b and interacting with Snail1/2 in bladder cancer.J Cell Biochem. 2019 Jan;120(1):357-367. doi: 10.1002/jcb.27387. Epub 2018 Aug 30.
11 Sex-determining region Y-box protein 3 induces epithelial-mesenchymal transition in osteosarcoma cells via transcriptional activation of Snail1.J Exp Clin Cancer Res. 2017 Mar 23;36(1):46. doi: 10.1186/s13046-017-0515-3.
12 Elevated expression of GNAS promotes breast cancer cell proliferation and migration via the PI3K/AKT/Snail1/E-cadherin axis.Clin Transl Oncol. 2019 Sep;21(9):1207-1219. doi: 10.1007/s12094-019-02042-w. Epub 2019 Feb 14.
13 SNAIL1 action in tumor cells influences macrophage polarization and metastasis in breast cancer through altered GM-CSF secretion.Oncogenesis. 2018 Mar 29;7(3):32. doi: 10.1038/s41389-018-0042-x.
14 Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis.Am J Pathol. 2011 Jan;178(1):175-86. doi: 10.1016/j.ajpath.2010.11.026. Epub 2010 Dec 23.
15 Glyceraldehyde-3-phosphate dehydrogenase promotes cancer growth and metastasis through upregulation of SNAIL expression.Int J Oncol. 2017 Jan;50(1):252-262. doi: 10.3892/ijo.2016.3774. Epub 2016 Nov 18.
16 KDM6B/JMJD3 histone demethylase is induced by vitamin D and modulates its effects in colon cancer cells.Hum Mol Genet. 2011 Dec 1;20(23):4655-65. doi: 10.1093/hmg/ddr399. Epub 2011 Sep 2.
17 Claudin-7 downregulation induces metastasis and invasion in colorectal cancer via the promotion of epithelial-mesenchymal transition.Biochem Biophys Res Commun. 2019 Jan 15;508(3):797-804. doi: 10.1016/j.bbrc.2018.10.049. Epub 2018 Dec 6.
18 SNAIL1-mediated downregulation of FOXA proteins facilitates the inactivation of transcriptional enhancer elements at key epithelial genes in colorectal cancer cells.PLoS Genet. 2017 Nov 20;13(11):e1007109. doi: 10.1371/journal.pgen.1007109. eCollection 2017 Nov.
19 Biological Aggressiveness of Subclinical No-Mass Ductal Carcinoma In Situ (DCIS) Can Be Reflected by the Expression Profiles of Epithelial-Mesenchymal Transition Triggers.Int J Mol Sci. 2018 Dec 7;19(12):3941. doi: 10.3390/ijms19123941.
20 SNAI1 recruits HDAC1 to suppress SNAI2 transcription during epithelial to mesenchymal transition.Sci Rep. 2019 Jun 5;9(1):8295. doi: 10.1038/s41598-019-44826-8.
21 OTUB1 promotes esophageal squamous cell carcinoma metastasis through modulating Snail stability.Oncogene. 2018 Jun;37(25):3356-3368. doi: 10.1038/s41388-018-0224-1. Epub 2018 Mar 21.
22 The histone H3 Lys 27 demethylase KDM6B promotes migration and invasion of glioma cells partly by regulating the expression of SNAI1.Neurochem Int. 2019 Mar;124:123-129. doi: 10.1016/j.neuint.2019.01.006. Epub 2019 Jan 8.
23 Burst patterning of hypothalamic paraventricular nucleus-driven sympathetic nerve activity in ANG II-salt hypertension.Am J Physiol Heart Circ Physiol. 2018 Mar 1;314(3):H530-H541. doi: 10.1152/ajpheart.00560.2017. Epub 2017 Nov 22.
24 The role of microRNA-30a and downstream snail1 on the growth and metastasis of melanoma tumor.Iran J Basic Med Sci. 2019 May;22(5):534-540. doi: 10.22038/IJBMS.2019.32317.7745.
25 miR-200c overexpression inhibits the invasion and tumorigenicity of epithelial ovarian cancer cells by suppressing lncRNA HOTAIR in mice.J Cell Biochem. 2020 Feb;121(2):1514-1523. doi: 10.1002/jcb.29387. Epub 2019 Sep 18.
26 Ginsenoside Rg3 promotes the antitumor activity of gefitinib in lung cancer cell lines.Exp Ther Med. 2019 Jan;17(1):953-959. doi: 10.3892/etm.2018.7001. Epub 2018 Nov 21.
27 Combined detection of Twist1, Snail1 and squamous cell carcinoma antigen for the prognostic evaluation of invasion and metastasis in cervical squamous cell carcinoma.Int J Clin Oncol. 2018 Apr;23(2):321-328. doi: 10.1007/s10147-017-1210-2. Epub 2017 Nov 3.
28 miR-199a-5p inhibits the progression of papillary thyroid carcinoma by targeting SNAI1.Biochem Biophys Res Commun. 2018 Feb 26;497(1):181-186. doi: 10.1016/j.bbrc.2018.02.051. Epub 2018 Feb 8.
29 Characteristics of slow progression to diabetes in multiple islet autoantibody-positive individuals from five longitudinal cohorts: the SNAIL study.Diabetologia. 2018 Jun;61(6):1484-1490. doi: 10.1007/s00125-018-4591-5. Epub 2018 Mar 12.
30 ETS1 induces transforming growth factor signaling and promotes epithelial-to-mesenchymal transition in prostate cancer cells.J Cell Biochem. 2019 Jan;120(1):848-860. doi: 10.1002/jcb.27446. Epub 2018 Aug 30.
31 Snail homolog 1 is involved in epithelial-mesenchymal transition-like processes in human glioblastoma cells.Oncol Lett. 2017 May;13(5):3882-3888. doi: 10.3892/ol.2017.5875. Epub 2017 Mar 17.
32 TOX3 inhibits cancer cell migration and invasion via transcriptional regulation of SNAI1 and SNAI2 in clear cell renal cell carcinoma.Cancer Lett. 2019 May 1;449:76-86. doi: 10.1016/j.canlet.2019.02.020. Epub 2019 Feb 14.
33 Chemical genomic screening for methylation-silenced genes in gastric cancer cell lines using 5-aza-2'-deoxycytidine treatment and oligonucleotide microarray. Cancer Sci. 2006 Jan;97(1):64-71.
34 Polyethylenimine-Spherical Nucleic Acid Nanoparticles against Gli1 Reduce the Chemoresistance and Stemness of Glioblastoma Cells.Mol Pharm. 2018 Nov 5;15(11):5135-5145. doi: 10.1021/acs.molpharmaceut.8b00707. Epub 2018 Oct 11.
35 Maternal exposure to di-n-butyl phthalate promotes Snail1-mediated epithelial-mesenchymal transition of renal tubular epithelial cells via upregulation of TGF-1 during renal fibrosis in rat offspring.Ecotoxicol Environ Saf. 2019 Mar;169:266-272. doi: 10.1016/j.ecoenv.2018.10.073. Epub 2018 Nov 16.
36 Retinoic acid receptor alpha amplifications and retinoic acid sensitivity in breast cancers. Clin Breast Cancer. 2013 Oct;13(5):401-8.
37 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
38 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
39 Cisplatin treatment of primary and metastatic epithelial ovarian carcinomas generates residual cells with mesenchymal stem cell-like profile. J Cell Biochem. 2011 Oct;112(10):2850-64. doi: 10.1002/jcb.23199.
40 Inorganic arsenic promotes luminal to basal transition and metastasis of breast cancer. FASEB J. 2020 Dec;34(12):16034-16048. doi: 10.1096/fj.202001192R. Epub 2020 Oct 13.
41 Quercetin suppresses pancreatic ductal adenocarcinoma progression via inhibition of SHH and TGF-/Smad signaling pathways. Cell Biol Toxicol. 2021 Jun;37(3):479-496. doi: 10.1007/s10565-020-09562-0. Epub 2020 Oct 17.
42 Inhibition of the cancer stem cells-like properties by arsenic trioxide, involved in the attenuation of endogenous transforming growth factor beta signal. Toxicol Sci. 2015 Jan;143(1):156-64. doi: 10.1093/toxsci/kfu218. Epub 2014 Oct 10.
43 Manganese superoxide dismutase induces migration and invasion of tongue squamous cell carcinoma via H2O2-dependent Snail signaling. Free Radic Biol Med. 2012 Jul 1;53(1):44-50. doi: 10.1016/j.freeradbiomed.2012.04.031. Epub 2012 May 9.
44 Inhibitory effects of 3,3'-diindolylmethane on epithelial-mesenchymal transition induced by endocrine disrupting chemicals in cellular and xenograft mouse models of breast cancer. Food Chem Toxicol. 2017 Nov;109(Pt 1):284-295. doi: 10.1016/j.fct.2017.08.037. Epub 2017 Aug 24.
45 Chemical genomic screening for methylation-silenced genes in gastric cancer cell lines using 5-aza-2'-deoxycytidine treatment and oligonucleotide microarray. Cancer Sci. 2006 Jan;97(1):64-71.
46 Vitamin K3 (menadione) suppresses epithelial-mesenchymal-transition and Wnt signaling pathway in human colorectal cancer cells. Chem Biol Interact. 2019 Aug 25;309:108725. doi: 10.1016/j.cbi.2019.108725. Epub 2019 Jun 22.
47 Arsenite and cadmium promote the development of mammary tumors. Carcinogenesis. 2020 Jul 14;41(7):1005-1014. doi: 10.1093/carcin/bgz176.
48 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
49 The Antihelminthic Niclosamide Inhibits Cancer Stemness, Extracellular Matrix Remodeling, and Metastasis through Dysregulation of the Nuclear -catenin/c-Myc axis in OSCC. Sci Rep. 2018 Aug 24;8(1):12776. doi: 10.1038/s41598-018-30692-3.
50 Enhancement of cancer stem-like and epithelial-mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: reversal by targeting SNAIL. Toxicol Appl Pharmacol. 2013 Feb 1;266(3):459-69.
51 In vitro antitumoral effects of the steroid ouabain on human thyroid papillary carcinoma cell lines. Environ Toxicol. 2021 Jul;36(7):1338-1348. doi: 10.1002/tox.23130. Epub 2021 Mar 24.
52 GSK3, snail, and adhesion molecule regulation by cyclosporine A in renal tubular cells. Toxicol Sci. 2012 Jun;127(2):425-37. doi: 10.1093/toxsci/kfs108. Epub 2012 Mar 12.
53 Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism. Chem Biol Interact. 2016 Apr 25;250:1-11.
54 Anti-invasive activity of sanguinarine through modulation of tight junctions and matrix metalloproteinase activities in MDA-MB-231 human breast carcinoma cells. Chem Biol Interact. 2009 May 15;179(2-3):185-91. doi: 10.1016/j.cbi.2008.11.009. Epub 2008 Nov 21.
55 Ketamine-induced bladder fibrosis involves epithelial-to-mesenchymal transition mediated by transforming growth factor-1. Am J Physiol Renal Physiol. 2017 Oct 1;313(4):F961-F972. doi: 10.1152/ajprenal.00686.2016. Epub 2017 Mar 22.
56 Aldosterone induces epithelial-mesenchymal transition via ROS of mitochondrial origin. Am J Physiol Renal Physiol. 2007 Sep;293(3):F723-31. doi: 10.1152/ajprenal.00480.2006. Epub 2007 Jun 27.
57 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
58 Androgen regulation of prostasin gene expression is mediated by sterol-regulatory element-binding proteins and SLUG. Prostate. 2006 Jun 15;66(9):911-20. doi: 10.1002/pros.20325.
59 Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. PLoS One. 2011 Jan 31;6(1):e16530. doi: 10.1371/journal.pone.0016530.
60 Andrographolide inhibits the growth of human osteosarcoma cells by suppressing Wnt/-catenin, PI3K/AKT and NF-B signaling pathways. Chem Biol Interact. 2022 Sep 25;365:110068. doi: 10.1016/j.cbi.2022.110068. Epub 2022 Jul 31.
61 Cancer metastasis and EGFR signaling is suppressed by amiodarone-induced versican V2. Oncotarget. 2015 Dec 15;6(40):42976-87. doi: 10.18632/oncotarget.5621.
62 Inhibition of NF-B and metastasis in irinotecan (CPT-11)-resistant LoVo colon cancer cells by thymoquinone via JNK and p38. Environ Toxicol. 2017 Feb;32(2):669-678. doi: 10.1002/tox.22268. Epub 2016 Apr 5.
63 Upregulation of genes orchestrating keratinocyte differentiation, including the novel marker gene ID2, by contact sensitizers in human bulge-derived keratinocytes. J Biochem Mol Toxicol. 2010 Jan-Feb;24(1):10-20.
64 Antroquinonol from Antrodia Camphorata suppresses breast tumor migration/invasion through inhibiting ERK-AP-1- and AKT-NF-B-dependent MMP-9 and epithelial-mesenchymal transition expressions. Food Chem Toxicol. 2015 Apr;78:33-41. doi: 10.1016/j.fct.2015.01.012. Epub 2015 Feb 2.
65 Delphinidin induces apoptosis and inhibits epithelial-to-mesenchymal transition via the ERK/p38 MAPK-signaling pathway in human osteosarcoma cell lines. Environ Toxicol. 2018 Jun;33(6):640-649. doi: 10.1002/tox.22548. Epub 2018 Feb 16.
66 Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells. Mutat Res Genet Toxicol Environ Mutagen. 2014 Dec;775-776:48-54. doi: 10.1016/j.mrgentox.2014.10.011. Epub 2014 Nov 4.
67 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
68 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
69 3,5,4'-Trimethoxystilbene, a natural methoxylated analog of resveratrol, inhibits breast cancer cell invasiveness by downregulation of PI3K/Akt and Wnt/-catenin signaling cascades and reversal of epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2013 Nov 1;272(3):746-56. doi: 10.1016/j.taap.2013.07.019. Epub 2013 Aug 3.
70 Tetrandrine inhibits human brain glioblastoma multiforme GBM 8401 cancer cell migration and invasion in vitro. Environ Toxicol. 2019 Apr;34(4):364-374. doi: 10.1002/tox.22691. Epub 2018 Dec 13.
71 COX-2 inhibition by celecoxib in epithelial ovarian cancer attenuates E-cadherin suppression through reduced Snail nuclear translocation. Chem Biol Interact. 2018 Aug 25;292:24-29. doi: 10.1016/j.cbi.2018.06.020. Epub 2018 Jun 20.
72 Verbascoside inhibits the epithelial-mesenchymal transition of prostate cancer cells through high-mobility group box 1/receptor for advanced glycation end-products/TGF- pathway. Environ Toxicol. 2021 Jun;36(6):1080-1089. doi: 10.1002/tox.23107. Epub 2021 Feb 1.
73 Embelin suppresses growth of human pancreatic cancer xenografts, and pancreatic cancer cells isolated from KrasG12D mice by inhibiting Akt and Sonic hedgehog pathways. PLoS One. 2014 Apr 2;9(4):e92161.
74 The vicious cycle between ferritinophagy and ROS production triggered EMT inhibition of gastric cancer cells was through p53/AKT/mTor pathway. Chem Biol Interact. 2020 Sep 1;328:109196. doi: 10.1016/j.cbi.2020.109196. Epub 2020 Jul 18.
75 Bisphenol A and nonylphenol have the potential to stimulate the migration of ovarian cancer cells by inducing epithelial-mesenchymal transition via an estrogen receptor dependent pathway. Chem Res Toxicol. 2015 Apr 20;28(4):662-71. doi: 10.1021/tx500443p. Epub 2015 Mar 3.
76 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
77 Regulation of chromatin assembly and cell transformation by formaldehyde exposure in human cells. Environ Health Perspect. 2017 Sep 21;125(9):097019.
78 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
79 Deguelin inhibits growth of breast cancer cells by modulating the expression of key members of the Wnt signaling pathway. Cancer Prev Res (Phila). 2009 Nov;2(11):942-50. doi: 10.1158/1940-6207.CAPR-08-0232. Epub 2009 Oct 27.
80 Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation. J Biol Chem. 2012 Jul 20;287(30):25292-302.
81 The role of the p38 MAPK signaling pathway in high glucose-induced epithelial-mesenchymal transition of cultured human renal tubular epithelial cells. PLoS One. 2011;6(7):e22806. doi: 10.1371/journal.pone.0022806. Epub 2011 Jul 29.
82 Microarray Analysis of Gene Expression Alteration in Human Middle Ear Epithelial Cells Induced by Asian Sand Dust. Clin Exp Otorhinolaryngol. 2015 Dec;8(4):345-53. doi: 10.3342/ceo.2015.8.4.345. Epub 2015 Nov 10.
83 Notch mediated epithelial to mesenchymal transformation is associated with increased expression of the Snail transcription factor. Int J Biochem Cell Biol. 2010 Jul;42(7):1115-22. doi: 10.1016/j.biocel.2010.03.016. Epub 2010 Mar 27.
84 GLI inhibitors overcome Erlotinib resistance in human pancreatic cancer cells by modulating E-cadherin. J Chemother. 2019 May;31(3):141-149. doi: 10.1080/1120009X.2019.1584422. Epub 2019 Apr 14.
85 Impaired autophagic flux and p62-mediated EMT are involved in arsenite-induced transformation of L-02 cells. Toxicol Appl Pharmacol. 2017 Nov 1;334:75-87. doi: 10.1016/j.taap.2017.09.004. Epub 2017 Sep 6.
86 Microcystin-LR promotes epithelial-mesenchymal transition in colorectal cancer cells through PI3-K/AKT and SMAD2. Toxicol Lett. 2017 Jan 4;265:53-60. doi: 10.1016/j.toxlet.2016.11.004. Epub 2016 Nov 14.
87 Cordycepin Inhibits Triple-Negative Breast Cancer Cell Migration and Invasion by Regulating EMT-TFs SLUG, TWIST1, SNAIL1, and ZEB1. Front Oncol. 2022 Jun 14;12:898583. doi: 10.3389/fonc.2022.898583. eCollection 2022.
88 Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway. J Appl Toxicol. 2014 Jan;34(1):105-12. doi: 10.1002/jat.2941. Epub 2013 Oct 10.
89 AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells. PLoS One. 2016 Dec 9;11(12):e0167848. doi: 10.1371/journal.pone.0167848. eCollection 2016.
90 Mangiferin exerts antitumor activity in breast cancer cells by regulating matrix metalloproteinases, epithelial to mesenchymal transition, and -catenin signaling pathway. Toxicol Appl Pharmacol. 2013 Oct 1;272(1):180-90. doi: 10.1016/j.taap.2013.05.011. Epub 2013 May 22.
91 Effect of benzophenone-1 and octylphenol on the regulation of epithelial-mesenchymal transition via an estrogen receptor-dependent pathway in estrogen receptor expressing ovarian cancer cells. Food Chem Toxicol. 2016 Jul;93:58-65. doi: 10.1016/j.fct.2016.04.026. Epub 2016 May 1.
92 Shikonin suppresses small cell lung cancer growth via inducing ATF3-mediated ferroptosis to promote ROS accumulation. Chem Biol Interact. 2023 Sep 1;382:110588. doi: 10.1016/j.cbi.2023.110588. Epub 2023 Jun 1.
93 Interleukin-6 induced overexpression of valosin-containing protein (VCP)/p97 is associated with androgen-independent prostate cancer (AIPC) progression. J Cell Physiol. 2018 Oct;233(10):7148-7164. doi: 10.1002/jcp.26639. Epub 2018 Apr 25.
94 Targeting histone deacetylase-3 blocked epithelial-mesenchymal plasticity and metastatic dissemination in gastric cancer. Cell Biol Toxicol. 2023 Oct;39(5):1873-1896. doi: 10.1007/s10565-021-09673-2. Epub 2022 Jan 1.
95 Autophagy mediates bronchial cell malignant transformation induced by chronic arsenic exposure via MEK/ERK1/2 pathway. Toxicol Lett. 2020 Oct 10;332:155-163. doi: 10.1016/j.toxlet.2020.06.006. Epub 2020 Jul 6.
96 Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer. Int J Biochem Cell Biol. 2016 Feb;71:12-23. doi: 10.1016/j.biocel.2015.11.014. Epub 2015 Nov 28.