General Information of Drug (ID: DMPDYFR)

Drug Name
Cefazolin
Synonyms
CEZ; Cefamezin; Cefamezine; Cefazolina; Cefazoline; Cefazolinum; Cephamezine; Cephazolidin; Cephazolin; Cephazoline; Elzogram; Cephazolin Sodium; Ancef (TN); Cefacidal (TN); Cefamezin (TN); Cefazolin (USP); Cefazolin [USAN:INN]; Cefazolin(usp); Cefazolina [INN-Spanish]; Cefazoline [INN-French]; Cefazolinum [INN-Latin]; Cefrina (TN); Elzogram (TN); Faxilen (TN); Gramaxin (TN); Kefazol (TN); Kefol (TN); Kefzol (TN); Kefzolan (TN); Kezolin (TN); Novaporin (TN); Zolicef (TN); (6R, 7R)-3-[[(5-Methyl-1,3,4-thiadiazol-2-yl)thio]methyl]-8-oxo-7-[[1H-tetrazol-1-yl)acetyl]amino]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid; (6R,7R)-3-(((5-Methyl-1,3,4-thiadiazol-2-yl)thio)methyl)-8-oxo-7-(2-(1H-tetrazol-1-yl)acetamido)-5-thia-1-azabicyclo(4.2.0)oct-2-ene-2-carboxylic acid; (6R,7R)-3-[(5-methyl-1,3,4-thiadiazol-2-yl)sulfanylmethyl]-8-oxo-7-[[2-(tetrazol-1-yl)acetyl]amino]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid; (6R,7R)-3-{[(5-methyl-1,3,4-thiadiazol-2-yl)sulfanyl]methyl}-8-oxo-7-[(1H-tetrazol-1-ylacetyl)amino]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid; (6R,7R)-3-{[(5-methyl-1,3,4-thiadiazol-2-yl)thio]methyl}-8-oxo-7-[(1H-tetrazol-1-ylacetyl)amino]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid; (6R-trans)-3-(((5-Methyl-1,3,4-thiadiazol-2-yl)thio)methyl)-8-oxo-7-(((1H-tetrazol-1-yl)acetyl)-amino)-5-thia-1-azabicyclo(4.2.0)oct-2-ene-2-carboxylic acid; 3-{[(5-methyl-1,3,4-thiadiazol-2-yl)sulfanyl]methyl}-7beta-[(1H-tetrazol-1-ylacetyl)amino]-3,4-didehydrocepham-4-carboxylic acid; 7-(1-(1H-)-Tetrazolylacetamido)-3-(2-(5-methyl-1,3,4-thiadiazolyl)thiomethyl)delta3-cephem-4-carboxylic acid
Indication
Disease Entry ICD 11 Status REF
Bacterial infection 1A00-1C4Z Approved [1]
Therapeutic Class
Antibiotics
Drug Type
Small molecular drug
Structure
3D MOL 2D MOL
#Ro5 Violations (Lipinski): 1 Molecular Weight (mw) 454.5
Topological Polar Surface Area (xlogp) -0.4
Rotatable Bond Count (rotbonds) 7
Hydrogen Bond Donor Count (hbonddonor) 2
Hydrogen Bond Acceptor Count (hbondacc) 12
ADMET Property
BDDCS Class
Biopharmaceutics Drug Disposition Classification System (BDDCS) Class 3: high solubility and low permeability [2]
Clearance
The drug present in the plasma can be removed from the body at the rate of 0.89 mL/min/kg [3]
Elimination
80% of drug is excreted from urine in the unchanged form [2]
Half-life
The concentration or amount of drug in body reduced by one-half in 1.8 hours [3]
Metabolism
The drug is not metabolised [4]
MRTD
The Maximum Recommended Therapeutic Dose (MRTD) of drug that ensured maximising efficacy and moderate side effect is 146.75116 micromolar/kg/day [5]
Unbound Fraction
The unbound fraction of drug in plasma is 0.18% [3]
Vd
Fluid volume that would be required to contain the amount of drug present in the body at the same concentration as in the plasma 0.12 L/kg [3]
Water Solubility
The ability of drug to dissolve in water is measured as 33 mg/mL [2]
Chemical Identifiers
Formula
C14H14N8O4S3
IUPAC Name
(6R,7R)-3-[(5-methyl-1,3,4-thiadiazol-2-yl)sulfanylmethyl]-8-oxo-7-[[2-(tetrazol-1-yl)acetyl]amino]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid
Canonical SMILES
CC1=NN=C(S1)SCC2=C(N3[C@@H]([C@@H](C3=O)NC(=O)CN4C=NN=N4)SC2)C(=O)O
InChI
InChI=1S/C14H14N8O4S3/c1-6-17-18-14(29-6)28-4-7-3-27-12-9(11(24)22(12)10(7)13(25)26)16-8(23)2-21-5-15-19-20-21/h5,9,12H,2-4H2,1H3,(H,16,23)(H,25,26)/t9-,12-/m1/s1
InChIKey
MLYYVTUWGNIJIB-BXKDBHETSA-N
Cross-matching ID
PubChem CID
33255
ChEBI ID
CHEBI:474053
CAS Number
25953-19-9
DrugBank ID
DB01327
TTD ID
D09KDN
VARIDT ID
DR00577
INTEDE ID
DR2503

Molecular Interaction Atlas of This Drug


Drug Therapeutic Target (DTT)
DTT Name DTT ID UniProt ID MOA REF
Bacterial Penicillin binding protein (Bact PBP) TTJP4SM NOUNIPROTAC Binder [6]

Drug Transporter (DTP)
DTP Name DTP ID UniProt ID MOA REF
Peptide transporter 1 (SLC15A1) DT9G7XN S15A1_HUMAN Substrate [7]
Multidrug resistance-associated protein 4 (ABCC4) DTCSGPB MRP4_HUMAN Substrate [8]
Organic anion transporter 1 (SLC22A6) DTQ23VB S22A6_HUMAN Substrate [9]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [10]
Organic anion transporter 3 (SLC22A8) DTVP67E S22A8_HUMAN Substrate [9]

Drug-Metabolizing Enzyme (DME)
DME Name DME ID UniProt ID MOA REF
Thiopurine methyltransferase (TPMT) DEFQ8VO TPMT_HUMAN Substrate [11]
Beta-lactamase (blaB) DEP0IWS A0A378EHS6_KLEPR Substrate [12]
Beta-lactamase (blaB) DE7IH52 AMPC_CITFR Substrate [13], [14]
Beta-lactamase (blaB) DENJ2SQ BLAB_BACFG Substrate [15], [16]
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This Drug

Drug-Drug Interaction (DDI) Information of This Drug

Coadministration of a Drug Treating the Disease Different from Cefazolin (Comorbidity)
DDI Drug Name DDI Drug ID Severity Mechanism Comorbidity REF
Givosiran DM5PFIJ Moderate Increased risk of nephrotoxicity by the combination of Cefazolin and Givosiran. Inborn porphyrin/heme metabolism error [5C58] [78]
Plazomicin DMKMBES Moderate Increased risk of nephrotoxicity by the combination of Cefazolin and Plazomicin. Urinary tract infection [GC08] [79]

References

1 FDA Approved Drug Products from FDA Official Website. 2009. Application Number: (ANDA) 065244.
2 BDDCS applied to over 900 drugs
3 Trend Analysis of a Database of Intravenous Pharmacokinetic Parameters in Humans for 1352 Drug Compounds
4 FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res. 2014 Sep 1;20(17):4436-41.
5 Estimating the safe starting dose in phase I clinical trials and no observed effect level based on QSAR modeling of the human maximum recommended daily dose
6 Bacteriological characteristics of Staphylococcus aureus isolates from humans and bulk milk. J Dairy Sci. 2008 Feb;91(2):564-9.
7 Three-dimensional quantitative structure-activity relationship analyses of beta-lactam antibiotics and tripeptides as substrates of the mammalian H+/peptide cotransporter PEPT1. J Med Chem. 2005 Jun 30;48(13):4410-9.
8 Oral availability of cefadroxil depends on ABCC3 and ABCC4. Drug Metab Dispos. 2012 Mar;40(3):515-21.
9 Expression levels of renal organic anion transporters (OATs) and their correlation with anionic drug excretion in patients with renal diseases. Pharm Res. 2004 Jan;21(1):61-7.
10 Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011 Mar;63(1):157-81.
11 Cefazolin administration and 2-methyl-1,3,4-thiadiazole-5-thiol in human tissue: possible relationship to hypoprothrombinemia. Drug Metab Dispos. 2002 Oct;30(10):1123-8.
12 Analysis of the drug-resistant characteristics of Klebsiella pneumoniae isolated from the respiratory tract and CTX-M ESBL genes. Genet Mol Res. 2015 Oct 5;14(4):12043-8.
13 Citrobacter freundii bacteremia: Risk factors of mortality and prevalence of resistance genes. J Microbiol Immunol Infect. 2018 Aug;51(4):565-572.
14 Identification and functional characterization of arylamine N-acetyltransferases in eubacteria: evidence for highly selective acetylation of 5-aminosalicylic acid. J Bacteriol. 2001 Jun;183(11):3417-27.
15 Prevalence of antimicrobial resistance genes in Bacteroides spp. and Prevotella spp. Dutch clinical isolates. Clin Microbiol Infect. 2019 Sep;25(9):1156.e9-1156.e13.
16 Antibacterial activity of cefoperazone against anaerobic bacteria (author's transl). Jpn J Antibiot. 1980 Nov;33(11):1171-82.
17 Genetics of rheumatoid arthritis. Mayo Clin Proc. 2006 Jan;81(1):94-101.
18 Polymorphism of estrogen metabolism genes and cataract. Med Hypotheses. 2004;63(3):494-7.
19 Influence of estradiol-17 beta and progesterone on catechol-O-methyltransferase and monoamine oxidase activities in uterine artery and myometrium of ovariectomized pigs. Arch Vet Pol. 1993;33(1-2):29-37.
20 The degree of myelosuppression during maintenance therapy of adolescents with B-lineage intermediate risk acute lymphoblastic leukemia predicts risk of relapse. Leukemia. 2010 Apr;24(4):715-20.
21 Histamine-N-methyl transferase polymorphism and risk for multiple sclerosis. Eur J Neurol. 2010 Feb;17(2):335-8.
22 Ascorbic acid inhibits spinal meningeal catechol-o-methyl transferase in vitro, markedly increasing epinephrine bioavailability. Anesthesiology. 1997 Feb;86(2):405-9.
23 Adrenal catecholamines and their metabolism in the vitamin A deficient rat. Ann Nutr Metab. 1983;27(3):220-7.
24 Reduced 3-O-methyl-dopa levels in OCD patients and their unaffected parents is associated with the low activity M158 COMT allele. Am J Med Genet B Neuropsychiatr Genet. 2010 Mar 5;153B(2):542-548.
25 Usefulness of thiopurine methyltransferase and thiopurine metabolite analysis in clinical practice in patients with inflammatory bowel diseases. Acta Gastroenterol Belg. 2010 Jul-Sep;73(3):331-5.
26 Nodular regenerative liver hyperplasia as a complication of azathioprine-containing immunosuppressive treatment for Crohn's disease. Immunopharmacol Immunotoxicol. 2011 Jun;33(2):398-402.
27 Detection and characterization of beta-lactamase genes in subgingival bacteria from patients with refractory periodontitis. FEMS Microbiol Lett. 2005 Jan 15;242(2):319-24.
28 Antibiotic therapy for inducible AmpC beta-lactamase-producing Gram-negative bacilli: what are the alternatives to carbapenems, quinolones and aminoglycosides? Int J Antimicrob Agents. 2012 Oct;40(4):297-305.
29 Analyses of a ceftazidime-avibactam-resistant Citrobacter freundii isolate carrying blaKPC-2 reveals a heterogenous population and reversible genotype. mSphere. 2018 Sep 26;3(5). pii: e00408-18.
30 Antimicrobial drugs used in the management of anaerobic infections in children. Drugs. 1983 Dec;26(6):520-9.
31 Preclinical Mouse Models To Study Human OATP1B1- and OATP1B3-Mediated Drug-Drug Interactions in Vivo. Mol Pharm. 2015 Dec 7;12(12):4259-69.
32 Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013 Mar 15;19(6):1458-66.
33 Identification of drugs and drug metabolites as substrates of multidrug resistance protein 2 (MRP2) using triple-transfected MDCK-OATP1B1-UGT1A1-MRP2 cells. Br J Pharmacol. 2012 Mar;165(6):1836-1847.
34 The effect of SLCO1B1*15 on the disposition of pravastatin and pitavastatin is substrate dependent: the contribution of transporting activity changes by SLCO1B1*15. Pharmacogenet Genomics. 2008 May;18(5):424-33.
35 Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol. 2007 Dec;63(12):1161-9.
36 Rifampicin alters atorvastatin plasma concentration on the basis of SLCO1B1 521T>C polymorphism. Clin Chim Acta. 2009 Jul;405(1-2):49-52.
37 FDA Drug Development and Drug Interactions
38 Interaction of nonsteroidal anti-inflammatory drugs with multidrug resistance protein (MRP) 2/ABCC2- and MRP4/ABCC4-mediated methotrexate transport. J Pharmacol Exp Ther. 2007 Jan;320(1):229-35.
39 Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Res. 2002 Jun 1;62(11):3144-50.
40 ATP-binding cassette C transporters in human pancreatic carcinoma cell lines. Upregulation in 5-fluorouracil-resistant cells. Pancreatology. 2009;9(1-2):136-44.
41 The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9244-9.
42 Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions. Pharm Res. 2013 Apr;30(4):996-1007.
43 Steroid and bile acid conjugates are substrates of human multidrug-resistance protein (MRP) 4 (ATP-binding cassette C4). Biochem J. 2003 Apr 15;371(Pt 2):361-7.
44 P-glycoprotein, but not multidrug resistance protein 4, plays a role in the systemic clearance of irinotecan and SN-38 in mice. Drug Metab Lett. 2010 Dec;4(4):195-201.
45 Polymorphisms in multidrug resistance-associated protein gene 4 is associated with outcome in childhood acute lymphoblastic leukemia. Blood. 2009 Aug 13;114(7):1383-6.
46 Role of glutathione in the multidrug resistance protein 4 (MRP4/ABCC4)-mediated efflux of cAMP and resistance to purine analogues. Biochem J. 2002 Feb 1;361(Pt 3):497-503.
47 Interactions of amoxicillin and cefaclor with human renal organic anion and peptide transporters. Drug Metab Dispos. 2006 Apr;34(4):547-55.
48 Peptide transporter substrate identification during permeability screening in drug discovery: comparison of transfected MDCK-hPepT1 cells to Caco-2 cells. Arch Pharm Res. 2007 Apr;30(4):507-18.
49 Several hPepT1-transported drugs are substrates of the Escherichia coli proton-coupled oligopeptide transporter YdgR. Res Microbiol. 2017 Jun;168(5):443-449.
50 High-affinity interaction of sartans with H+/peptide transporters. Drug Metab Dispos. 2009 Jan;37(1):143-9.
51 The intestinal H+/peptide symporter PEPT1: structure-affinity relationships. Eur J Pharm Sci. 2004 Jan;21(1):53-60.
52 Intestinal transport of beta-lactam antibiotics: analysis of the affinity at the H+/peptide symporter (PEPT1), the uptake into Caco-2 cell monolayers and the transepithelial flux. Pharm Res. 1999 Jan;16(1):55-61.
53 The anti-influenza drug oseltamivir exhibits low potential to induce pharmacokinetic drug interactions via renal secretion-correlation of in vivo and in vitro studies. Drug Metab Dispos. 2002 Jan;30(1):13-9.
54 Transport of aminopterin by human organic anion transporters hOAT1 and hOAT3: Comparison with methotrexate. Drug Metab Pharmacokinet. 2010;25(2):163-9.
55 Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. J Pharmacol Exp Ther. 2002 Apr;301(1):293-8.
56 Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther. 2002 Mar;300(3):918-24.
57 Multiple human isoforms of drug transporters contribute to the hepatic and renal transport of olmesartan, a selective antagonist of the angiotensin II AT1-receptor. Drug Metab Dispos. 2007 Dec;35(12):2166-76.
58 Interaction of zalcitabine with human organic anion transporter 1. Pharmazie. 2006 May;61(5):491-2.
59 Apical expression or expression in a non polarized cell of hOAT1 inverses regulation by epidermal growth factor (EGF) as compared to basolateral hOAT1. Cell Physiol Biochem. 2004;14(3):177-86.
60 Human renal organic anion transporter 1 (hOAT1) and its role in the nephrotoxicity of antiviral nucleotide analogs. Nucleosides Nucleotides Nucleic Acids. 2001 Apr-Jul;20(4-7):641-8.
61 Methotrexate-loxoprofen interaction: involvement of human organic anion transporters hOAT1 and hOAT3. Drug Metab Pharmacokinet. 2004 Oct;19(5):369-74.
62 Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol. 2001 May;59(5):1277-86.
63 Prediction of the overall renal tubular secretion and hepatic clearance of anionic drugs and a renal drug-drug interaction involving organic anion transporter 3 in humans by in vitro uptake experiments. Drug Metab Dispos. 2011 Jun;39(6):1031-8.
64 Murine renal organic anion transporters mOAT1 and mOAT3 facilitate the transport of neuroactive tryptophan metabolites. Am J Physiol Cell Physiol. 2005 Nov;289(5):C1075-84.
65 Organic anion transporter 3 is involved in the brain-to-blood efflux transport of thiopurine nucleobase analogs. J Neurochem. 2004 Aug;90(4):931-41.
66 Transporter-mediated influx and efflux mechanisms of pitavastatin, a new inhibitor of HMG-CoA reductase. J Pharm Pharmacol. 2005 Oct;57(10):1305-11.
67 The contribution of organic anion transporters OAT1 and OAT3 to the renal uptake of rosuvastatin. J Pharmacol Exp Ther. 2007 Sep;322(3):1221-7.
68 Aspirin and probenecid inhibit organic anion transporter 3-mediated renal uptake of cilostazol and probenecid induces metabolism of cilostazol in the rat. Drug Metab Dispos. 2014 Jun;42(6):996-1007.
69 Effects of amino acid alterations in penicillin-binding proteins (PBPs) 1a, 2b, and 2x on PBP affinities of penicillin, ampicillin, amoxicillin, cefditoren, cefuroxime, cefprozil, and cefaclor in 18 clinical isolates of penicillin-susceptible, -intermediate, and -resistant pneumococci. Antimicrob Agents Chemother. 2002 May;46(5):1273-80.
70 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services.
71 Activities of antibiotics against methicillin-resistant Staphylococcus aureus with particular reference to synergetic effect between ticarcillin and fosfomycin on penicillinase non-producing methicillin-resistant S. aureus. Jpn J Antibiot. 1993 Jun;46(6):421-7.
72 Emerging drugs for bacterial urinary tract infections. Expert Opin Emerg Drugs. 2005 May;10(2):275-98.
73 Penicillin-binding protein sensitive to cephalexin in sporulation of Bacillus cereus. Microbiol Res. 1997 Sep;152(3):227-32.
74 Clofarabine: past, present, and future. Leuk Lymphoma. 2007 Oct;48(10):1922-30.
75 Relationship between penicillin-binding protein patterns and beta-lactamases in clinical isolates of Bacteroides fragilis with different susceptibility to beta-lactam antibiotics. J Med Microbiol. 2004 Mar;53(Pt 3):213-21.
76 Resistance of Pseudomonas aeruginosa to cefsulodin: modification of penicillin-binding protein 3 and mapping of its chromosomal gene. J Antimicrob Chemother. 1990 Apr;25(4):513-23.
77 In vitro antienterococcal activity explains associations between exposures to antimicrobial agents and risk of colonization by multiresistant enter... J Infect Dis. 2004 Dec 15;190(12):2162-6.
78 Cerner Multum, Inc. "Australian Product Information.".
79 Agencia Espaola de Medicamentos y Productos Sanitarios Healthcare "Centro de informacion online de medicamentos de la AEMPS - CIMA.".