General Information of Disease (ID: DISKZAUY)

Disease Name Familial multiple trichoepithelioma
Synonyms
hereditary multiple benign cystic epithelioma; epithelioma Adenoides Cysticum of Brooke; multiple familial trichoepithelioma; epithelioma adenoides cysticum; trichoepithelioma multiple familial; Brooke-Fordyce Trichoepitheliomas; epithelioma, hereditary multiple benign cystic
Disease Hierarchy
DIS36OT6: Brooke-Spiegler syndrome
DISKZAUY: Familial multiple trichoepithelioma
Disease Identifiers
MONDO ID
MONDO_0011114
MESH ID
C536611
UMLS CUI
C1275122
OMIM ID
601606
MedGen ID
220890
Orphanet ID
867
SNOMED CT ID
403825008

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 17 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
OLFM4 TTK1CX7 Limited Biomarker [1]
AXL TTZPY6J Strong Biomarker [2]
CA12 TTSYM0R Strong Biomarker [3]
CDK9 TT1LVF2 Strong Biomarker [4]
CTSE TTLXC4Q Strong Altered Expression [5]
FABP1 TTIV96N Strong Altered Expression [6]
GJC2 TTPOCAL Strong Biomarker [7]
HSP90B1 TTFPKXQ Strong Altered Expression [8]
IL18RAP TTZUJVE Strong Genetic Variation [9]
INHBA TTVB30D Strong Altered Expression [10]
ITK TT3C80U Strong Biomarker [11]
JMJD1C TTBISK4 Strong Genetic Variation [12]
KLK7 TTE6GTB Strong Altered Expression [13]
MAGEA6 TTJIWMO Strong Altered Expression [14]
RORC TTGV6LY Strong Altered Expression [15]
SLC10A2 TTPI1M5 Strong Biomarker [16]
SRR TTZFUY6 Strong Biomarker [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 DTT(s)
This Disease Is Related to 2 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC35A2 DT0567K Strong Genetic Variation [18]
SLC52A3 DTBVQIO Strong Genetic Variation [19]
------------------------------------------------------------------------------------
This Disease Is Related to 51 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
MEGF8 OT5G38CH Limited Biomarker [20]
CYLD OT37FKH0 Supportive Autosomal dominant [21]
RAP1GAP OTC31ONQ moderate Altered Expression [22]
ARID1A OTRWDV3P Strong Genetic Variation [23]
BARX1 OT2VP73H Strong Genetic Variation [24]
BNC2 OTU22H9Z Strong Biomarker [25]
C6orf120 OTPBRZZR Strong Biomarker [26]
C9 OT7I5FDX Strong Altered Expression [27]
CAMK2G OTHD9KJG Strong Biomarker [28]
CLDN2 OTRF3D6Y Strong Altered Expression [29]
CRNKL1 OTWBQNGU Strong Biomarker [30]
DAD1 OTUUNQBT Strong Posttranslational Modification [31]
EIF1 OTB4GZ0V Strong Biomarker [17]
EIF4A2 OT08H03R Strong Biomarker [15]
ELMO1 OTY2ORXK Strong Genetic Variation [32]
EMX2 OT0V8OYK Strong Altered Expression [33]
EPC1 OT3Q25ND Strong Biomarker [34]
EPC2 OTTG0W9R Strong Biomarker [34]
EPS8L3 OT7XYA2T Strong Biomarker [35]
FABP12 OTZD0E3B Strong Genetic Variation [35]
FABP6 OTIRQWLW Strong Altered Expression [16]
FBLN1 OT5MHHOP Strong Biomarker [28]
FOXF1 OT2CJZ5K Strong Genetic Variation [24]
GDF7 OTNZY74B Strong Genetic Variation [36]
GSTT2 OTANW3TJ Strong Altered Expression [37]
HGD OTTKLQOO Strong Biomarker [38]
HOMER2 OT4JGKJF Strong Altered Expression [39]
INSIG2 OTX4VY51 Strong Biomarker [40]
LCE1E OTG0VXM2 Strong Genetic Variation [40]
MCM5 OTAHLB62 Strong Altered Expression [41]
MPG OTAHW80B Strong Altered Expression [42]
MUC6 OTPVL723 Strong Altered Expression [43]
MUS81 OTVZ4E60 Strong Biomarker [44]
MYO9B OTQ94R5K Strong Genetic Variation [45]
NOC2L OTNT7R33 Strong Biomarker [46]
OMA1 OT0JRVY7 Strong Biomarker [47]
PKP1 OT9HSQ8F Strong Biomarker [48]
PLCE1 OTJISZOX Strong Genetic Variation [19]
PPIE OTIE5OAD Strong Genetic Variation [49]
RBM3 OTAJ7R31 Strong Altered Expression [50]
RFC3 OT1MS7AO Strong Biomarker [51]
RIN2 OTCY73U9 Strong Biomarker [7]
RNF128 OTJO86CJ Strong Altered Expression [17]
RNF141 OT07ANSG Strong Biomarker [52]
RRAD OTW2O4GD Strong Posttranslational Modification [53]
SAFB OTGRV2LW Strong Altered Expression [54]
SEC14L3 OTGQ8GWM Strong Altered Expression [55]
SERPINB4 OT88LHZ8 Strong Altered Expression [56]
SLC22A18 OT9C3KR4 Strong Altered Expression [54]
TNNT1 OT8PBOAR Strong Biomarker [57]
TRIM31 OT7VW6RP Strong Altered Expression [52]
------------------------------------------------------------------------------------
⏷ Show the Full List of 51 DOT(s)

References

1 Olfactomedin 4 (OLFM4) expression is associated with nodal metastases in esophageal adenocarcinoma.PLoS One. 2019 Jul 8;14(7):e0219494. doi: 10.1371/journal.pone.0219494. eCollection 2019.
2 AXL Mediates Esophageal Adenocarcinoma Cell Invasion through Regulation of Extracellular Acidification and Lysosome Trafficking.Neoplasia. 2018 Oct;20(10):1008-1022. doi: 10.1016/j.neo.2018.08.005. Epub 2018 Sep 3.
3 Carbonic anhydrases II, IX, and XII in Barrett's esophagus and adenocarcinoma.Virchows Arch. 2018 Nov;473(5):567-575. doi: 10.1007/s00428-018-2424-z. Epub 2018 Jul 31.
4 Targeting CDK9 and MCL-1 by a new CDK9/p-TEFb inhibitor with and without 5-fluorouracil in esophageal adenocarcinoma.Ther Adv Med Oncol. 2019 Jul 25;11:1758835919864850. doi: 10.1177/1758835919864850. eCollection 2019.
5 High Expression of Cathepsin E in Tissues but Not Blood of Patients with Barrett's Esophagus and Adenocarcinoma.Ann Surg Oncol. 2015 Jul;22(7):2431-8. doi: 10.1245/s10434-014-4155-y. Epub 2014 Oct 28.
6 FABP1 and Hepar expression levels in Barrett's esophagus and associated neoplasia in an Asian population.Dig Liver Dis. 2017 Oct;49(10):1104-1109. doi: 10.1016/j.dld.2017.06.014. Epub 2017 Jul 27.
7 DNA methylation as an adjunct to histopathology to detect prevalent, inconspicuous dysplasia and early-stage neoplasia in Barrett's esophagus.Clin Cancer Res. 2013 Feb 15;19(4):878-88. doi: 10.1158/1078-0432.CCR-12-2880. Epub 2012 Dec 14.
8 Glucose-regulated protein 94 deficiency induces squamous cell metaplasia and suppresses PTEN-null driven endometrial epithelial tumor development.Oncotarget. 2016 Mar 22;7(12):14885-97. doi: 10.18632/oncotarget.7450.
9 Genes of the interleukin-18 pathway are associated with susceptibility to Barrett's esophagus and esophageal adenocarcinoma.Am J Gastroenterol. 2012 Sep;107(9):1331-41. doi: 10.1038/ajg.2012.134. Epub 2012 Jun 5.
10 INHBA overexpression promotes cell proliferation and may be epigenetically regulated in esophageal adenocarcinoma.J Thorac Oncol. 2009 Apr;4(4):455-62. doi: 10.1097/JTO.0b013e31819c791a.
11 Dusp6 inhibits epithelial-mesenchymal transition in endometrial adenocarcinoma via ERK signaling pathway.Radiol Oncol. 2019 Sep 24;53(3):307-315. doi: 10.2478/raon-2019-0034.
12 Polymorphisms in genes in the androgen pathway and risk of Barrett's esophagus and esophageal adenocarcinoma.Int J Cancer. 2016 Mar 1;138(5):1146-52. doi: 10.1002/ijc.29863. Epub 2015 Oct 5.
13 Cigarette smoke mediates epigenetic repression of miR-217 during esophageal adenocarcinogenesis.Oncogene. 2015 Oct 29;34(44):5548-59. doi: 10.1038/onc.2015.10. Epub 2015 Feb 23.
14 Investigation into the expression levels of MAGEA6 in esophageal squamous cell carcinoma and esophageal adenocarcinoma tissues.Exp Ther Med. 2019 Sep;18(3):1816-1822. doi: 10.3892/etm.2019.7735. Epub 2019 Jul 5.
15 Cap-dependent mRNA translation and the ubiquitin-proteasome system cooperate to promote ERBB2-dependent esophageal cancer phenotype.Cancer Gene Ther. 2012 Sep;19(9):609-18. doi: 10.1038/cgt.2012.39. Epub 2012 Jul 6.
16 Expression of bile acid transporting proteins in Barrett's esophagus and esophageal adenocarcinoma.Am J Gastroenterol. 2009 Feb;104(2):302-9. doi: 10.1038/ajg.2008.85. Epub 2009 Jan 27.
17 Isoforms of RNF128 Regulate the Stability of Mutant P53 in Barrett's Esophageal Cells.Gastroenterology. 2020 Feb;158(3):583-597.e1. doi: 10.1053/j.gastro.2019.10.040. Epub 2019 Nov 9.
18 High enzyme activity UGT1A1 or low activity UGT1A8 and UGT2B4 genotypes increase esophageal cancer risk.Int J Oncol. 2012 Jun;40(6):1789-96. doi: 10.3892/ijo.2012.1385. Epub 2012 Feb 22.
19 GWAS-uncovered SNPs in PLCE1 and RFT2 genes are not implicated in Dutch esophageal adenocarcinoma and squamous cell carcinoma etiology.Eur J Cancer Prev. 2013 Sep;22(5):417-9. doi: 10.1097/CEJ.0b013e32835c7f53.
20 Decreased selenium-binding protein 1 in esophageal adenocarcinoma results from posttranscriptional and epigenetic regulation and affects chemosensitivity.Clin Cancer Res. 2010 Apr 1;16(7):2009-21. doi: 10.1158/1078-0432.CCR-09-2801. Epub 2010 Mar 23.
21 Update of cylindromatosis gene (CYLD) mutations in Brooke-Spiegler syndrome: novel insights into the role of deubiquitination in cell signaling. Hum Mutat. 2009 Jul;30(7):1025-36. doi: 10.1002/humu.21024.
22 Rap1GAP inhibits tumor progression in endometrial cancer.Biochem Biophys Res Commun. 2017 Apr 1;485(2):476-483. doi: 10.1016/j.bbrc.2017.02.044. Epub 2017 Feb 11.
23 Distinct esophageal adenocarcinoma molecular subtype has subtype-specific gene expression and mutation patterns.BMC Genomics. 2018 Oct 24;19(1):769. doi: 10.1186/s12864-018-5165-0.
24 Supportive evidence for FOXP1, BARX1, and FOXF1 as genetic risk loci for the development of esophageal adenocarcinoma.Cancer Med. 2015 Nov;4(11):1700-4. doi: 10.1002/cam4.500. Epub 2015 Aug 15.
25 Chromosomal abnormalities and novel disease-related regions in progression from Barrett's esophagus to esophageal adenocarcinoma.Int J Cancer. 2009 Nov 15;125(10):2349-59. doi: 10.1002/ijc.24620.
26 MicroRNA-17 is downregulated in esophageal adenocarcinoma cancer stem-like cells and promotes a radioresistant phenotype.Oncotarget. 2017 Feb 14;8(7):11400-11413. doi: 10.18632/oncotarget.13940.
27 Evaluation of Serum Glycoprotein Biomarker Candidates for Detection of Esophageal Adenocarcinoma and Surveillance of Barrett's Esophagus.Mol Cell Proteomics. 2018 Dec;17(12):2324-2334. doi: 10.1074/mcp.RA118.000734. Epub 2018 Aug 10.
28 RNA sequencing of esophageal adenocarcinomas identifies novel fusion transcripts, including NPC1-MELK, arising from a complex chromosomal rearrangement.Cancer. 2017 Oct 15;123(20):3916-3924. doi: 10.1002/cncr.30837. Epub 2017 Jun 22.
29 High expression of Claudin-2 in esophageal carcinoma and precancerous lesions is significantly associated with the bile salt receptors VDR and TGR5.BMC Gastroenterol. 2017 Feb 17;17(1):33. doi: 10.1186/s12876-017-0590-0.
30 Protein coding gene CRNKL1 as a potential prognostic biomarker in esophageal adenocarcinoma.Artif Intell Med. 2017 Feb;76:1-6. doi: 10.1016/j.artmed.2017.01.002. Epub 2017 Jan 22.
31 Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett's-associated neoplastic progression and predicts progression risk.Oncogene. 2005 Jun 9;24(25):4138-48. doi: 10.1038/sj.onc.1208598.
32 Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity.Nat Genet. 2013 May;45(5):478-86. doi: 10.1038/ng.2591. Epub 2013 Mar 24.
33 EMX2 is epigenetically silenced and suppresses epithelialmesenchymal transition in human esophageal adenocarcinoma.Oncol Rep. 2019 Nov;42(5):2169-2178. doi: 10.3892/or.2019.7284. Epub 2019 Aug 20.
34 In-depth characterization of the Wnt-signaling/-catenin pathway in an in vitro model of Barrett's sequence.BMC Gastroenterol. 2019 Mar 6;19(1):38. doi: 10.1186/s12876-019-0957-5.
35 Marie Unna hereditary hypotrichosis accompanied by multiple familial trichoepithelioma in a Chinese family.J Dermatol. 2019 May;46(5):413-417. doi: 10.1111/1346-8138.14811. Epub 2019 Feb 27.
36 The Barrett-associated variants at GDF7 and TBX5 also increase esophageal adenocarcinoma risk.Cancer Med. 2016 May;5(5):888-91. doi: 10.1002/cam4.641. Epub 2016 Jan 18.
37 Constitutively Higher Level of GSTT2 in Esophageal Tissues From African Americans Protects Cells Against DNA Damage.Gastroenterology. 2019 Apr;156(5):1404-1415. doi: 10.1053/j.gastro.2018.12.004. Epub 2018 Dec 19.
38 Persistent confirmed low-grade dysplasia in Barrett's esophagus is a risk factor for progression to high-grade dysplasia and adenocarcinoma in a US Veterans cohort.Dis Esophagus. 2020 Mar 5;33(2):doz061. doi: 10.1093/dote/doz061.
39 Overexpression of HOMER2 predicts better outcome in low-grade endometrioid endometrial adenocarcinoma.Pathology. 2018 Aug;50(5):499-503. doi: 10.1016/j.pathol.2018.03.004. Epub 2018 Jun 8.
40 Single nucleotide polymorphisms in obesity-related genes and the risk of esophageal cancers.Cancer Epidemiol Biomarkers Prev. 2008 Apr;17(4):1007-12. doi: 10.1158/1055-9965.EPI-08-0023.
41 Minichromosomal Maintenance Component Complex 5 (MCM5) as a Marker of Barrett's Esophagus-Related Neoplasia: A Feasibility Study.Dig Dis Sci. 2019 Oct;64(10):2815-2822. doi: 10.1007/s10620-019-05607-5. Epub 2019 Apr 13.
42 Diagnostic correlation between the expression of the DNA repair enzyme N-methylpurine DNA glycosylase and esophageal adenocarcinoma onset: a retrospective pilot study.Dis Esophagus. 2013 Aug;26(6):644-50. doi: 10.1111/dote.12003. Epub 2012 Nov 8.
43 Mucin Expression in the Esophageal Malignant and Pre-malignant States: A Systematic Review and Meta-analysis.J Clin Gastroenterol. 2018 Feb;52(2):91-96. doi: 10.1097/MCG.0000000000000863.
44 Translational study identifies XPF and MUS81 as predictive biomarkers for oxaliplatin-based peri-operative chemotherapy in patients with esophageal adenocarcinoma.Sci Rep. 2018 May 8;8(1):7265. doi: 10.1038/s41598-018-24232-2.
45 Myo9B is associated with an increased risk of Barrett's esophagus and esophageal adenocarcinoma.Scand J Gastroenterol. 2012 Dec;47(12):1422-8. doi: 10.3109/00365521.2012.722673. Epub 2012 Sep 7.
46 Tyrosine kinase inhibitor induced growth factor receptor upregulation enhances the efficacy of near-infrared targeted photodynamic therapy in esophageal adenocarcinoma cell lines.Oncotarget. 2017 May 2;8(18):29846-29856. doi: 10.18632/oncotarget.16165.
47 Genome-wide methylation analysis shows similar patterns in Barrett's esophagus and esophageal adenocarcinoma.Carcinogenesis. 2013 Dec;34(12):2750-6. doi: 10.1093/carcin/bgt286. Epub 2013 Aug 29.
48 Aberrantly methylated PKP1 in the progression of Barrett's esophagus to esophageal adenocarcinoma.Genes Chromosomes Cancer. 2012 Apr;51(4):384-93. doi: 10.1002/gcc.21923. Epub 2011 Dec 14.
49 Next-generation sequencing of endoscopic biopsies identifies ARID1A as a tumor-suppressor gene in Barrett's esophagus.Oncogene. 2014 Jan 16;33(3):347-57. doi: 10.1038/onc.2012.586. Epub 2013 Jan 14.
50 Reduced RBM3 expression is associated with aggressive tumor features in esophageal cancer but not significantly linked to patient outcome.BMC Cancer. 2018 Nov 12;18(1):1106. doi: 10.1186/s12885-018-5032-z.
51 Integrative genomics identified RFC3 as an amplified candidate oncogene in esophageal adenocarcinoma.Clin Cancer Res. 2012 Apr 1;18(7):1936-46. doi: 10.1158/1078-0432.CCR-11-1431. Epub 2012 Feb 10.
52 RING finger proteins are involved in the progression of barrett esophagus to esophageal adenocarcinoma: a preliminary study.Gut Liver. 2014 Sep;8(5):487-94. doi: 10.5009/gnl13133. Epub 2014 Feb 24.
53 Aberrant methylation of the Ras-related associated with diabetes gene in human primary esophageal cancer.Anticancer Res. 2013 Nov;33(11):5199-203.
54 The decreased expression of Beclin-1 correlates with progression to esophageal adenocarcinoma: the role of deoxycholic acid.Am J Physiol Gastrointest Liver Physiol. 2012 Apr 15;302(8):G864-72. doi: 10.1152/ajpgi.00340.2011. Epub 2012 Feb 2.
55 Trastuzumab mediated T-cell response against HER-2/neu overexpressing esophageal adenocarcinoma depends on intact antigen processing machinery.PLoS One. 2010 Aug 26;5(8):e12424. doi: 10.1371/journal.pone.0012424.
56 Squamous cell carcinoma antigen 1 is associated to poor prognosis in esophageal cancer through immune surveillance impairment and reduced chemosensitivity.Cancer Sci. 2019 May;110(5):1552-1563. doi: 10.1111/cas.13986. Epub 2019 Apr 15.
57 Molecular Analysis of Mixed Endometrioid and Serous Adenocarcinoma of the Endometrium.PLoS One. 2015 Jul 1;10(7):e0130909. doi: 10.1371/journal.pone.0130909. eCollection 2015.