General Information of Drug Off-Target (DOT) (ID: OT0JZOMY)

DOT Name GTP-binding protein SAR1b (SAR1B)
Synonyms GTP-binding protein B; GTBPB
Gene Name SAR1B
Related Disease
Abetalipoproteinemia ( )
Alzheimer disease ( )
Chylomicron retention disease ( )
Colorectal carcinoma ( )
Cone-rod dystrophy 2 ( )
Dementia ( )
Hypobetalipoproteinemia ( )
Malabsorption syndrome ( )
Chronic diarrhoea ( )
Chronic obstructive pulmonary disease ( )
UniProt ID
SAR1B_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
8E0A; 8E0B; 8E0C; 8E0D
Pfam ID
PF00025
Sequence
MSFIFDWIYSGFSSVLQFLGLYKKTGKLVFLGLDNAGKTTLLHMLKDDRLGQHVPTLHPT
SEELTIAGMTFTTFDLGGHVQARRVWKNYLPAINGIVFLVDCADHERLLESKEELDSLMT
DETIANVPILILGNKIDRPEAISEERLREMFGLYGQTTGKGSISLKELNARPLEVFMCSV
LKRQGYGEGFRWMAQYID
Function
GTP-binding protein involved in transport from the endoplasmic reticulum to the Golgi apparatus. Activated by the guanine nucleotide exchange factor PREB. Involved in the selection of the protein cargo and the assembly of the COPII coat complex. Synergizes with the cargo receptor SURF4 to mediate the export of lipoproteins from the endoplasmic reticulum, thereby regulating lipoprotein delivery and the maintenance of lipid homeostasis.
Tissue Specificity Expressed in many tissues including small intestine, liver, muscle and brain.
KEGG Pathway
Protein processing in endoplasmic reticulum (hsa04141 )
Legionellosis (hsa05134 )
Reactome Pathway
COPII-mediated vesicle transport (R-HSA-204005 )
MHC class II antigen presentation (R-HSA-2132295 )
Cargo concentration in the ER (R-HSA-5694530 )
Chylomicron assembly (R-HSA-8963888 )
SARS-CoV-2 activates/modulates innate and adaptive immune responses (R-HSA-9705671 )
Antigen Presentation (R-HSA-983170 )
Regulation of cholesterol biosynthesis by SREBP (SREBF) (R-HSA-1655829 )

Molecular Interaction Atlas (MIA) of This DOT

10 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Abetalipoproteinemia DISMSS7T Strong Genetic Variation [1]
Alzheimer disease DISF8S70 Strong Genetic Variation [2]
Chylomicron retention disease DISOUTV5 Strong Autosomal recessive [3]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [4]
Cone-rod dystrophy 2 DISX2RWY Strong Genetic Variation [5]
Dementia DISXL1WY Strong Genetic Variation [2]
Hypobetalipoproteinemia DIS0TPI3 Strong Genetic Variation [6]
Malabsorption syndrome DISGMUVS Strong Genetic Variation [7]
Chronic diarrhoea DISH3PX3 Limited Biomarker [8]
Chronic obstructive pulmonary disease DISQCIRF Limited Biomarker [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of GTP-binding protein SAR1b (SAR1B). [10]
------------------------------------------------------------------------------------
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of GTP-binding protein SAR1b (SAR1B). [11]
Tretinoin DM49DUI Approved Tretinoin increases the expression of GTP-binding protein SAR1b (SAR1B). [12]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of GTP-binding protein SAR1b (SAR1B). [13]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of GTP-binding protein SAR1b (SAR1B). [14]
Selenium DM25CGV Approved Selenium decreases the expression of GTP-binding protein SAR1b (SAR1B). [15]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of GTP-binding protein SAR1b (SAR1B). [16]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of GTP-binding protein SAR1b (SAR1B). [17]
Geldanamycin DMS7TC5 Discontinued in Phase 2 Geldanamycin increases the expression of GTP-binding protein SAR1b (SAR1B). [18]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of GTP-binding protein SAR1b (SAR1B). [19]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of GTP-binding protein SAR1b (SAR1B). [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)

References

1 Update on the molecular biology of dyslipidemias.Clin Chim Acta. 2016 Feb 15;454:143-85. doi: 10.1016/j.cca.2015.10.033. Epub 2015 Nov 4.
2 Genetic polymorphisms of lipid metabolism gene SAR1 homolog B and the risk of Alzheimer's disease and vascular dementia.J Formos Med Assoc. 2016 Jan;115(1):38-44. doi: 10.1016/j.jfma.2015.01.008. Epub 2015 Feb 19.
3 PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels. Nat Genet. 2019 Nov;51(11):1560-1565. doi: 10.1038/s41588-019-0528-2.
4 Targeted Quantitative Proteomic Approach for Probing Altered Protein Expression of Small GTPases Associated with Colorectal Cancer Metastasis.Anal Chem. 2019 May 7;91(9):6233-6241. doi: 10.1021/acs.analchem.9b00938. Epub 2019 Apr 12.
5 Chylomicron retention disease: a long term study of two cohorts.Mol Genet Metab. 2009 Jun;97(2):136-42. doi: 10.1016/j.ymgme.2009.02.003. Epub 2009 Feb 20.
6 Novel mutations of SAR1B gene in four children with chylomicron retention disease.J Clin Lipidol. 2019 Jul-Aug;13(4):554-562. doi: 10.1016/j.jacl.2019.05.013. Epub 2019 May 30.
7 Animal model of Sar1b deficiency presents lipid absorption deficits similar to Anderson disease.J Mol Med (Berl). 2015 Feb;93(2):165-76. doi: 10.1007/s00109-014-1247-x. Epub 2015 Jan 7.
8 Anderson or chylomicron retention disease: molecular impact of five mutations in the SAR1B gene on the structure and the functionality of Sar1b protein.Mol Genet Metab. 2008 Jan;93(1):74-84. doi: 10.1016/j.ymgme.2007.08.120. Epub 2007 Oct 22.
9 Breathing Out Completely Before Inhalation: The Most Problematic Step in Application Technique in Patients With Non-Mild Chronic Obstructive Pulmonary Disease.Front Pharmacol. 2019 Mar 12;10:241. doi: 10.3389/fphar.2019.00241. eCollection 2019.
10 Integrated 'omics analysis reveals new drug-induced mitochondrial perturbations in human hepatocytes. Toxicol Lett. 2018 Jun 1;289:1-13.
11 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
12 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
13 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
14 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
15 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
16 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
17 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
18 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
19 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
20 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.