General Information of Drug Off-Target (DOT) (ID: OT2FZP6H)

DOT Name Aldehyde oxidase (AOX1)
Synonyms EC 1.2.3.1; Aldehyde oxidase 1; Azaheterocycle hydroxylase; EC 1.17.3.-
Gene Name AOX1
UniProt ID
AOXA_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4UHW; 4UHX; 5EPG; 6Q6Q; 7OPN; 7ORC; 8EMT
EC Number
1.17.3.-; 1.2.3.1
Pfam ID
PF01315 ; PF03450 ; PF00941 ; PF00111 ; PF01799 ; PF02738 ; PF20256
Sequence
MDRASELLFYVNGRKVIEKNVDPETMLLPYLRKKLRLTGTKYGCGGGGCGACTVMISRYN
PITKRIRHHPANACLIPICSLYGAAVTTVEGIGSTHTRIHPVQERIAKCHGTQCGFCTPG
MVMSIYTLLRNHPEPTLDQLTDALGGNLCRCTGYRPIIDACKTFCKTSGCCQSKENGVCC
LDQGINGLPEFEEGSKTSPKLFAEEEFLPLDPTQELIFPPELMIMAEKQSQRTRVFGSER
MMWFSPVTLKELLEFKFKYPQAPVIMGNTSVGPEVKFKGVFHPVIISPDRIEELSVVNHA
YNGLTLGAGLSLAQVKDILADVVQKLPEEKTQMYHALLKHLGTLAGSQIRNMASLGGHII
SRHPDSDLNPILAVGNCTLNLLSKEGKRQIPLNEQFLSKCPNADLKPQEILVSVNIPYSR
KWEFVSAFRQAQRQENALAIVNSGMRVFFGEGDGIIRELCISYGGVGPATICAKNSCQKL
IGRHWNEQMLDIACRLILNEVSLLGSAPGGKVEFKRTLIISFLFKFYLEVSQILKKMDPV
HYPSLADKYESALEDLHSKHHCSTLKYQNIGPKQHPEDPIGHPIMHLSGVKHATGEAIYC
DDMPLVDQELFLTFVTSSRAHAKIVSIDLSEALSMPGVVDIMTAEHLSDVNSFCFFTEAE
KFLATDKVFCVGQLVCAVLADSEVQAKRAAKRVKIVYQDLEPLILTIEESIQHNSSFKPE
RKLEYGNVDEAFKVVDQILEGEIHMGGQEHFYMETQSMLVVPKGEDQEMDVYVSTQFPKY
IQDIVASTLKLPANKVMCHVRRVGGAFGGKVLKTGIIAAVTAFAANKHGRAVRCVLERGE
DMLITGGRHPYLGKYKAGFMNDGRILALDMEHYSNAGASLDESLFVIEMGLLKMDNAYKF
PNLRCRGWACRTNLPSNTAFRGFGFPQAALITESCITEVAAKCGLSPEKVRIINMYKEID
QTPYKQEINAKNLIQCWRECMAMSSYSLRKVAVEKFNAENYWKKKGLAMVPLKFPVGLGS
RAAGQAAALVHIYLDGSVLVTHGGIEMGQGVHTKMIQVVSRELRMPMSNVHLRGTSTETV
PNANISGGSVVADLNGLAVKDACQTLLKRLEPIISKNPKGTWKDWAQTAFDESINLSAVG
YFRGYESDMNWEKGEGQPFEYFVYGAACSEVEIDCLTGDHKNIRTDIVMDVGCSINPAID
IGQIEGAFIQGMGLYTIEELNYSPQGILHTRGPDQYKIPAICDMPTELHIALLPPSQNSN
TLYSSKGLGESGVFLGCSVFFAIHDAVSAARQERGLHGPLTLNSPLTPEKIRMACEDKFT
KMIPRDEPGSYVPWNVPI
Function
Oxidase with broad substrate specificity, oxidizing aromatic azaheterocycles, such as N1-methylnicotinamide, N-methylphthalazinium and phthalazine, as well as aldehydes, such as benzaldehyde, retinal, pyridoxal, and vanillin. Plays a key role in the metabolism of xenobiotics and drugs containing aromatic azaheterocyclic substituents. Participates in the bioactivation of prodrugs such as famciclovir, catalyzing the oxidation step from 6-deoxypenciclovir to penciclovir, which is a potent antiviral agent. Is probably involved in the regulation of reactive oxygen species homeostasis. May be a prominent source of superoxide generation via the one-electron reduction of molecular oxygen. May also catalyze nitric oxide (NO) production via the reduction of nitrite to NO with NADH or aldehyde as electron donor. May play a role in adipogenesis.
Tissue Specificity
Abundant in liver, expressed in adipose tissue and at lower levels in lung, skeletal muscle, pancreas. In contrast to mice, no significant gender difference in AOX1 expression level (at protein level).
KEGG Pathway
Valine, leucine and isoleucine degradation (hsa00280 )
Tyrosine metabolism (hsa00350 )
Tryptophan metabolism (hsa00380 )
Vitamin B6 metabolism (hsa00750 )
Nicoti.te and nicoti.mide metabolism (hsa00760 )
Retinol metabolism (hsa00830 )
Drug metabolism - cytochrome P450 (hsa00982 )
Metabolic pathways (hsa01100 )
JAK-STAT sig.ling pathway (hsa04630 )
Reactome Pathway
Vitamin B6 activation to pyridoxal phosphate (R-HSA-964975 )
BioCyc Pathway
MetaCyc:ENSG00000138356-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 5 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Doxorubicin DMVP5YE Approved Aldehyde oxidase (AOX1) affects the response to substance of Doxorubicin. [28]
Paclitaxel DMLB81S Approved Aldehyde oxidase (AOX1) affects the response to substance of Paclitaxel. [28]
Mitomycin DMH0ZJE Approved Aldehyde oxidase (AOX1) affects the response to substance of Mitomycin. [28]
Topotecan DMP6G8T Approved Aldehyde oxidase (AOX1) affects the response to substance of Topotecan. [28]
Vinblastine DM5TVS3 Approved Aldehyde oxidase (AOX1) affects the response to substance of Vinblastine. [28]
------------------------------------------------------------------------------------
This DOT Affected the Regulation of Drug Effects of 5 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
XR-5000 DMOKUA5 Phase 2 Aldehyde oxidase (AOX1) affects the metabolism of XR-5000. [29]
XK-469 DMVYO41 Phase 1 Aldehyde oxidase (AOX1) affects the metabolism of XK-469. [29]
PF-4217903 DMU2A6D Phase 1 Aldehyde oxidase (AOX1) affects the metabolism of PF-4217903. [29]
RS-8359 DMERM0K Discontinued in Phase 2 Aldehyde oxidase (AOX1) affects the metabolism of RS-8359. [29]
6-Benzyloxy-9H-purin-2-ylamine DMFI7A8 Investigative Aldehyde oxidase (AOX1) affects the metabolism of 6-Benzyloxy-9H-purin-2-ylamine. [29]
------------------------------------------------------------------------------------
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Aldehyde oxidase (AOX1). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Aldehyde oxidase (AOX1). [22]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Aldehyde oxidase (AOX1). [24]
------------------------------------------------------------------------------------
26 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Aldehyde oxidase (AOX1). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Aldehyde oxidase (AOX1). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Aldehyde oxidase (AOX1). [4]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Aldehyde oxidase (AOX1). [5]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Aldehyde oxidase (AOX1). [6]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Aldehyde oxidase (AOX1). [7]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Aldehyde oxidase (AOX1). [8]
Progesterone DMUY35B Approved Progesterone increases the expression of Aldehyde oxidase (AOX1). [9]
Menadione DMSJDTY Approved Menadione decreases the activity of Aldehyde oxidase (AOX1). [10]
Panobinostat DM58WKG Approved Panobinostat decreases the expression of Aldehyde oxidase (AOX1). [11]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Aldehyde oxidase (AOX1). [12]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of Aldehyde oxidase (AOX1). [13]
Dasatinib DMJV2EK Approved Dasatinib decreases the expression of Aldehyde oxidase (AOX1). [14]
Permethrin DMZ0Q1G Approved Permethrin increases the expression of Aldehyde oxidase (AOX1). [15]
Prednisolone DMQ8FR2 Approved Prednisolone increases the expression of Aldehyde oxidase (AOX1). [13]
Rofecoxib DM3P5DA Approved Rofecoxib decreases the expression of Aldehyde oxidase (AOX1). [16]
Nefazodone DM4ZS8M Approved Nefazodone decreases the expression of Aldehyde oxidase (AOX1). [17]
Methylprednisolone DM4BDON Approved Methylprednisolone increases the expression of Aldehyde oxidase (AOX1). [13]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Aldehyde oxidase (AOX1). [18]
Isoflavone DM7U58J Phase 4 Isoflavone affects the expression of Aldehyde oxidase (AOX1). [19]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of Aldehyde oxidase (AOX1). [20]
CERC-801 DM3SZ7P Phase 2 CERC-801 increases the expression of Aldehyde oxidase (AOX1). [21]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Aldehyde oxidase (AOX1). [23]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Aldehyde oxidase (AOX1). [25]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Aldehyde oxidase (AOX1). [26]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Aldehyde oxidase (AOX1). [27]
------------------------------------------------------------------------------------
⏷ Show the Full List of 26 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol. 2009 Nov 1;240(3):355-66.
6 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
7 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
8 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
9 Endometrial receptivity is affected in women with high circulating progesterone levels at the end of the follicular phase: a functional genomics analysis. Hum Reprod. 2011 Jul;26(7):1813-25.
10 Cross-species comparison of the metabolism and excretion of zoniporide: contribution of aldehyde oxidase to interspecies differences. Drug Metab Dispos. 2010 Apr;38(4):641-54. doi: 10.1124/dmd.109.030783. Epub 2009 Dec 29.
11 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
12 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
13 Antirheumatic drug response signatures in human chondrocytes: potential molecular targets to stimulate cartilage regeneration. Arthritis Res Ther. 2009;11(1):R15.
14 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
15 Exposure to Insecticides Modifies Gene Expression and DNA Methylation in Hematopoietic Tissues In Vitro. Int J Mol Sci. 2023 Mar 26;24(7):6259. doi: 10.3390/ijms24076259.
16 Rofecoxib modulates multiple gene expression pathways in a clinical model of acute inflammatory pain. Pain. 2007 Mar;128(1-2):136-47.
17 Robustness testing and optimization of an adverse outcome pathway on cholestatic liver injury. Arch Toxicol. 2020 Apr;94(4):1151-1172. doi: 10.1007/s00204-020-02691-9. Epub 2020 Mar 10.
18 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
19 Soy isoflavones alter expression of genes associated with cancer progression, including interleukin-8, in androgen-independent PC-3 human prostate cancer cells. J Nutr. 2006 Jan;136(1):75-82.
20 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
21 Hydrogen sulfide protects SH-SY5Y neuronal cells against d-galactose induced cell injury by suppression of advanced glycation end products formation and oxidative stress. Neurochem Int. 2013 Apr;62(5):603-9.
22 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
23 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
24 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
25 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
26 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
27 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
28 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.
29 In vitro-in vivo correlation for intrinsic clearance for drugs metabolized by human aldehyde oxidase. Drug Metab Dispos. 2010 Aug;38(8):1322-7. doi: 10.1124/dmd.110.033555. Epub 2010 May 5.