General Information of Drug Off-Target (DOT) (ID: OT2OQEZS)

DOT Name Inward rectifier potassium channel 2 (KCNJ2)
Synonyms Cardiac inward rectifier potassium channel; Inward rectifier K(+) channel Kir2.1; IRK-1; hIRK1; Potassium channel, inwardly rectifying subfamily J member 2
Gene Name KCNJ2
Related Disease
Andersen-Tawil syndrome ( )
Short QT syndrome type 3 ( )
Short QT syndrome ( )
Familial atrial fibrillation ( )
Catecholaminergic polymorphic ventricular tachycardia ( )
Long QT syndrome ( )
UniProt ID
KCNJ2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6SPZ; 7ZDZ
Pfam ID
PF01007 ; PF17655 ; PF08466
Sequence
MGSVRTNRYSIVSSEEDGMKLATMAVANGFGNGKSKVHTRQQCRSRFVKKDGHCNVQFIN
VGEKGQRYLADIFTTCVDIRWRWMLVIFCLAFVLSWLFFGCVFWLIALLHGDLDASKEGK
ACVSEVNSFTAAFLFSIETQTTIGYGFRCVTDECPIAVFMVVFQSIVGCIIDAFIIGAVM
AKMAKPKKRNETLVFSHNAVIAMRDGKLCLMWRVGNLRKSHLVEAHVRAQLLKSRITSEG
EYIPLDQIDINVGFDSGIDRIFLVSPITIVHEIDEDSPLYDLSKQDIDNADFEIVVILEG
MVEATAMTTQCRSSYLANEILWGHRYEPVLFEEKHYYKVDYSRFHKTYEVPNTPLCSARD
LAEKKYILSNANSFCYENEVALTSKEEDDSENGVPESTSTDTPPDIDLHNQASVPLEPRP
LRRESEI
Function
Probably participates in establishing action potential waveform and excitability of neuronal and muscle tissues. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by extracellular barium or cesium.
Tissue Specificity Heart, brain, placenta, lung, skeletal muscle, and kidney. Diffusely distributed throughout the brain.
KEGG Pathway
Cholinergic sy.pse (hsa04725 )
Oxytocin sig.ling pathway (hsa04921 )
Renin secretion (hsa04924 )
Gastric acid secretion (hsa04971 )
Reactome Pathway
Classical Kir channels (R-HSA-1296053 )
Phase 4 - resting membrane potential (R-HSA-5576886 )
Sensory perception of sour taste (R-HSA-9729555 )
Inhibition of voltage gated Ca2+ channels via Gbeta/gamma subunits (R-HSA-997272 )
Activation of G protein gated Potassium channels (R-HSA-1296041 )

Molecular Interaction Atlas (MIA) of This DOT

6 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Andersen-Tawil syndrome DIS3IWZ7 Definitive Autosomal dominant [1]
Short QT syndrome type 3 DIST7UL9 Strong Autosomal dominant [2]
Short QT syndrome DISOI9X1 Moderate Autosomal dominant [3]
Familial atrial fibrillation DISL4AGF Supportive Autosomal dominant [4]
Catecholaminergic polymorphic ventricular tachycardia DISSAS1A Disputed Autosomal dominant [3]
Long QT syndrome DISMKWS3 Limited Autosomal dominant [3]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Propranolol DM79NTF Approved Inward rectifier potassium channel 2 (KCNJ2) affects the response to substance of Propranolol. [24]
Atenolol DMNKG1Z Approved Inward rectifier potassium channel 2 (KCNJ2) affects the response to substance of Atenolol. [24]
------------------------------------------------------------------------------------
23 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Inward rectifier potassium channel 2 (KCNJ2). [5]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Inward rectifier potassium channel 2 (KCNJ2). [6]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Inward rectifier potassium channel 2 (KCNJ2). [7]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Inward rectifier potassium channel 2 (KCNJ2). [8]
Arsenic DMTL2Y1 Approved Arsenic decreases the expression of Inward rectifier potassium channel 2 (KCNJ2). [9]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Inward rectifier potassium channel 2 (KCNJ2). [10]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Inward rectifier potassium channel 2 (KCNJ2). [11]
Triclosan DMZUR4N Approved Triclosan increases the expression of Inward rectifier potassium channel 2 (KCNJ2). [12]
Marinol DM70IK5 Approved Marinol decreases the expression of Inward rectifier potassium channel 2 (KCNJ2). [13]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of Inward rectifier potassium channel 2 (KCNJ2). [15]
Mitoxantrone DMM39BF Approved Mitoxantrone increases the expression of Inward rectifier potassium channel 2 (KCNJ2). [7]
Daunorubicin DMQUSBT Approved Daunorubicin increases the expression of Inward rectifier potassium channel 2 (KCNJ2). [7]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Inward rectifier potassium channel 2 (KCNJ2). [16]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of Inward rectifier potassium channel 2 (KCNJ2). [17]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of Inward rectifier potassium channel 2 (KCNJ2). [11]
DNCB DMDTVYC Phase 2 DNCB decreases the expression of Inward rectifier potassium channel 2 (KCNJ2). [18]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Inward rectifier potassium channel 2 (KCNJ2). [19]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Inward rectifier potassium channel 2 (KCNJ2). [20]
Eugenol DM7US1H Patented Eugenol decreases the expression of Inward rectifier potassium channel 2 (KCNJ2). [18]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Inward rectifier potassium channel 2 (KCNJ2). [21]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Inward rectifier potassium channel 2 (KCNJ2). [22]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Inward rectifier potassium channel 2 (KCNJ2). [15]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Inward rectifier potassium channel 2 (KCNJ2). [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Fulvestrant DM0YZC6 Approved Fulvestrant decreases the methylation of Inward rectifier potassium channel 2 (KCNJ2). [14]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Inward rectifier potassium channel 2 (KCNJ2). [14]
------------------------------------------------------------------------------------

References

1 Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest. 2002 Aug;110(3):381-8. doi: 10.1172/JCI15183.
2 A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res. 2005 Apr 15;96(7):800-7. doi: 10.1161/01.RES.0000162101.76263.8c. Epub 2005 Mar 10.
3 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
4 A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation. Biochem Biophys Res Commun. 2005 Jul 15;332(4):1012-9. doi: 10.1016/j.bbrc.2005.05.054.
5 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
6 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
7 Identification of genomic biomarkers for anthracycline-induced cardiotoxicity in human iPSC-derived cardiomyocytes: an in vitro repeated exposure toxicity approach for safety assessment. Arch Toxicol. 2016 Nov;90(11):2763-2777.
8 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
9 Gene expression profiles in peripheral lymphocytes by arsenic exposure and skin lesion status in a Bangladeshi population. Cancer Epidemiol Biomarkers Prev. 2006 Jul;15(7):1367-75. doi: 10.1158/1055-9965.EPI-06-0106.
10 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
11 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
12 Functional cardiotoxicity assessment of cosmetic compounds using human-induced pluripotent stem cell-derived cardiomyocytes. Arch Toxicol. 2018 Jan;92(1):371-381.
13 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
14 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
15 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
16 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
17 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
18 Microarray analyses in dendritic cells reveal potential biomarkers for chemical-induced skin sensitization. Mol Immunol. 2007 May;44(12):3222-33.
19 Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol. 2012 Apr 16;25(4):838-49.
20 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
21 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
22 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
23 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
24 Additional gene variants reduce effectiveness of beta-blockers in the LQT1 form of long QT syndrome. J Cardiovasc Electrophysiol. 2004 Feb;15(2):190-9. doi: 10.1046/j.1540-8167.2004.03212.x.