General Information of Drug Off-Target (DOT) (ID: OT3FHZ81)

DOT Name Interleukin-32 (IL32)
Synonyms IL-32; Natural killer cells protein 4; Tumor necrosis factor alpha-inducing factor
Gene Name IL32
UniProt ID
IL32_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF15225
Sequence
MCFPKVLSDDMKKLKARMVMLLPTSAQGLGAWVSACDTEDTVGHLGPWRDKDPALWCQLC
LSSQHQAIERFYDKMQNAESGRGQVMSSLAELEDDFKEGYLETVAAYYEEQHPELTPLLE
KERDGLRCRGNRSPVPDVEDPATEEPGESFCDKVMRWFQAMLQRLQTWWHGVLAWVKEKV
VALVHAVQALWKQFQSFCCSLSELFMSSFQSYGAPRGDKEELTPQKCSEPQSSK
Function
Cytokine that may play a role in innate and adaptive immune responses. It induces various cytokines such as TNFA/TNF-alpha and IL8. It activates typical cytokine signal pathways of NF-kappa-B and p38 MAPK.
Tissue Specificity Selectively expressed in lymphocytes. Expression is more prominent in immune cells than in non-immune cells.
KEGG Pathway
Cytokine-cytokine receptor interaction (hsa04060 )
Reactome Pathway
RAC3 GTPase cycle (R-HSA-9013423 )
Other interleukin signaling (R-HSA-449836 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Interleukin-32 (IL32). [1]
Arsenic DMTL2Y1 Approved Arsenic increases the methylation of Interleukin-32 (IL32). [7]
------------------------------------------------------------------------------------
24 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Interleukin-32 (IL32). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Interleukin-32 (IL32). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Interleukin-32 (IL32). [4]
Cisplatin DMRHGI9 Approved Cisplatin affects the expression of Interleukin-32 (IL32). [5]
Estradiol DMUNTE3 Approved Estradiol affects the expression of Interleukin-32 (IL32). [6]
Quercetin DM3NC4M Approved Quercetin increases the expression of Interleukin-32 (IL32). [8]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Interleukin-32 (IL32). [9]
Testosterone DM7HUNW Approved Testosterone increases the expression of Interleukin-32 (IL32). [9]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Interleukin-32 (IL32). [10]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Interleukin-32 (IL32). [5]
Marinol DM70IK5 Approved Marinol increases the expression of Interleukin-32 (IL32). [11]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Interleukin-32 (IL32). [12]
Menadione DMSJDTY Approved Menadione affects the expression of Interleukin-32 (IL32). [13]
Liothyronine DM6IR3P Approved Liothyronine increases the expression of Interleukin-32 (IL32). [14]
Ritonavir DMU764S Approved Ritonavir decreases the expression of Interleukin-32 (IL32). [15]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Interleukin-32 (IL32). [16]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Interleukin-32 (IL32). [8]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Interleukin-32 (IL32). [17]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Interleukin-32 (IL32). [18]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Interleukin-32 (IL32). [19]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Interleukin-32 (IL32). [20]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Interleukin-32 (IL32). [21]
Phencyclidine DMQBEYX Investigative Phencyclidine increases the expression of Interleukin-32 (IL32). [22]
CATECHIN DMY38SB Investigative CATECHIN decreases the expression of Interleukin-32 (IL32). [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 24 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
6 Estradiol and selective estrogen receptor modulators differentially regulate target genes with estrogen receptors alpha and beta. Mol Biol Cell. 2004 Mar;15(3):1262-72. doi: 10.1091/mbc.e03-06-0360. Epub 2003 Dec 29.
7 Transcriptomics and methylomics of CD4-positive T cells in arsenic-exposed women. Arch Toxicol. 2017 May;91(5):2067-2078. doi: 10.1007/s00204-016-1879-4. Epub 2016 Nov 12.
8 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
9 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
10 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
11 Single-cell Transcriptome Mapping Identifies Common and Cell-type Specific Genes Affected by Acute Delta9-tetrahydrocannabinol in Humans. Sci Rep. 2020 Feb 26;10(1):3450. doi: 10.1038/s41598-020-59827-1.
12 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
13 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
14 2,3,7,8-tetrachlorodibenzo-p-dioxin augments the modulation of gene expression mediated by the thyroid hormone receptor. Toxicol Appl Pharmacol. 2004 Feb 1;194(3):201-10. doi: 10.1016/j.taap.2003.09.010.
15 Transcriptional profiling suggests that Nevirapine and Ritonavir cause drug induced liver injury through distinct mechanisms in primary human hepatocytes. Chem Biol Interact. 2016 Aug 5;255:31-44.
16 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
17 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
18 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
19 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
20 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
21 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
22 Differential response of Mono Mac 6, BEAS-2B, and Jurkat cells to indoor dust. Environ Health Perspect. 2007 Sep;115(9):1325-32.
23 Epicatechin and a cocoa polyphenolic extract modulate gene expression in human Caco-2 cells. J Nutr. 2004 Oct;134(10):2509-16.