General Information of Drug Off-Target (DOT) (ID: OT63ZT3X)

DOT Name Transmembrane protein 135 (TMEM135)
Synonyms Peroxisomal membrane protein 52; PMP52
Gene Name TMEM135
Related Disease
Neoplasm ( )
Intellectual disability ( )
Osteoporosis ( )
Prostate cancer ( )
Prostate carcinoma ( )
Glioblastoma multiforme ( )
Non-small-cell lung cancer ( )
UniProt ID
TM135_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF02466 ; PF15982
Sequence
MAALSKSIPHNCYEIGHTWHPSCRVSFLQITGGALEESLKIYAPLYLIAAILRKRKLDYY
LHKLLPEILQSASFLTANGALYMAFFCILRKILGKFYSWTPGFGAALPASYVAILIERKS
RRGLLTIYMANLATETLFRMGVARGTITTLRNGEVLLFCITAAMYMFFFRCKDGLKGFTF
SALRFIVGKEEIPTHSFSPEAAYAKVEQKREQHEEKPGRMNMIGLVRKFVDSICKHGPRH
RCCKHYEDNCISYCIKGFIRMFSVGYLIQCCLRIPSAFRHLFTQPSRLLSLFYNKENFQL
GAFLGSFVSIYKGTSCFLRWIRNLDDELHAIIAGFLAGISMMFYKSTTISMYLASKLVET
MYFKGIEAGKVPYFPHADTIIYSISTAICFQAAVMEVQTLRPSYWKFLLRLTKGKFAVMN
RKVLDVFGTGASKHFQDFIPRLDPRYTTVTPELPTEFS
Function
Involved in mitochondrial metabolism by regulating the balance between mitochondrial fusion and fission. May act as a regulator of mitochondrial fission that promotes DNM1L-dependent fission through activation of DNM1L. May be involved in peroxisome organization.

Molecular Interaction Atlas (MIA) of This DOT

7 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Neoplasm DISZKGEW Definitive Genetic Variation [1]
Intellectual disability DISMBNXP Strong Biomarker [2]
Osteoporosis DISF2JE0 Strong Genetic Variation [3]
Prostate cancer DISF190Y Strong Biomarker [4]
Prostate carcinoma DISMJPLE Strong Biomarker [4]
Glioblastoma multiforme DISK8246 Limited Biomarker [5]
Non-small-cell lung cancer DIS5Y6R9 Limited Biomarker [5]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Paclitaxel DMLB81S Approved Transmembrane protein 135 (TMEM135) affects the response to substance of Paclitaxel. [20]
------------------------------------------------------------------------------------
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Transmembrane protein 135 (TMEM135). [6]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Transmembrane protein 135 (TMEM135). [7]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Transmembrane protein 135 (TMEM135). [8]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Transmembrane protein 135 (TMEM135). [9]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Transmembrane protein 135 (TMEM135). [10]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Transmembrane protein 135 (TMEM135). [11]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Transmembrane protein 135 (TMEM135). [13]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Transmembrane protein 135 (TMEM135). [14]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Transmembrane protein 135 (TMEM135). [15]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Transmembrane protein 135 (TMEM135). [16]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Transmembrane protein 135 (TMEM135). [17]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Transmembrane protein 135 (TMEM135). [18]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Transmembrane protein 135 (TMEM135). [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Transmembrane protein 135 (TMEM135). [12]
------------------------------------------------------------------------------------

References

1 Single nucleotide polymorphisms associated with risk for contralateral breast cancer in the Women's Environment, Cancer, and Radiation Epidemiology (WECARE) Study.Breast Cancer Res. 2011;13(6):R114. doi: 10.1186/bcr3057. Epub 2011 Nov 17.
2 Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature. 2011 Sep 21;478(7367):57-63. doi: 10.1038/nature10423.
3 Genetic determinants of heel bone properties: genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium.Hum Mol Genet. 2014 Jun 1;23(11):3054-68. doi: 10.1093/hmg/ddt675. Epub 2014 Jan 14.
4 Targeting genomic rearrangements in tumor cells through Cas9-mediated insertion of a suicide gene.Nat Biotechnol. 2017 Jun;35(6):543-550. doi: 10.1038/nbt.3843. Epub 2017 May 1.
5 Identification of recurrent fusion genes across multiple cancer types.Sci Rep. 2019 Jan 31;9(1):1074. doi: 10.1038/s41598-019-38550-6.
6 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
7 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
8 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
9 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
10 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
11 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
12 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
13 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
14 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
15 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
16 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
17 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
18 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
19 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
20 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.