General Information of Drug Off-Target (DOT) (ID: OT647WOR)

DOT Name Nuclear pore complex protein Nup88 (NUP88)
Synonyms 88 kDa nucleoporin; Nucleoporin Nup88
Gene Name NUP88
Related Disease
Acute lymphocytic leukaemia ( )
Breast cancer ( )
Breast carcinoma ( )
Colorectal carcinoma ( )
Fetal akinesia deformation sequence 4 ( )
Hepatocellular carcinoma ( )
HIV infectious disease ( )
Neoplasm ( )
Rheumatoid arthritis ( )
Advanced cancer ( )
Fetal akinesia deformation sequence 1 ( )
Intestinal neoplasm ( )
UniProt ID
NUP88_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7MNI; 7R5J; 7R5K
Pfam ID
PF10168
Sequence
MAAAEGPVGDGELWQTWLPNHVVFLRLREGLKNQSPTEAEKPASSSLPSSPPPQLLTRNV
VFGLGGELFLWDGEDSSFLVVRLRGPSGGGEEPALSQYQRLLCINPPLFEIYQVLLSPTQ
HHVALIGIKGLMVLELPKRWGKNSEFEGGKSTVNCSTTPVAERFFTSSTSLTLKHAAWYP
SEILDPHVVLLTSDNVIRIYSLREPQTPTNVIILSEAEEESLVLNKGRAYTASLGETAVA
FDFGPLAAVPKTLFGQNGKDEVVAYPLYILYENGETFLTYISLLHSPGNIGKLLGPLPMH
PAAEDNYGYDACAVLCLPCVPNILVIATESGMLYHCVVLEGEEEDDHTSEKSWDSRIDLI
PSLYVFECVELELALKLASGEDDPFDSDFSCPVKLHRDPKCPSRYHCTHEAGVHSVGLTW
IHKLHKFLGSDEEDKDSLQELSTEQKCFVEHILCTKPLPCRQPAPIRGFWIVPDILGPTM
ICITSTYECLIWPLLSTVHPASPPLLCTREDVEVAESPLRVLAETPDSFEKHIRSILQRS
VANPAFLKASEKDIAPPPEECLQLLSRATQVFREQYILKQDLAKEEIQRRVKLLCDQKKK
QLEDLSYCREERKSLREMAERLADKYEEAKEKQEDIMNRMKKLLHSFHSELPVLSDSERD
MKKELQLIPDQLRHLGNAIKQVTMKKDYQQQKMEKVLSLPKPTIILSAYQRKCIQSILKE
EGEHIREMVKQINDIRNHVNF
Function Component of nuclear pore complex.
Tissue Specificity Ubiquitous.
KEGG Pathway
Nucleocytoplasmic transport (hsa03013 )
Amyotrophic lateral sclerosis (hsa05014 )
Reactome Pathway
Transport of the SLBP independent Mature mRNA (R-HSA-159227 )
Transport of the SLBP Dependant Mature mRNA (R-HSA-159230 )
Transport of Mature mRNA Derived from an Intronless Transcript (R-HSA-159231 )
Transport of Mature mRNA derived from an Intron-Containing Transcript (R-HSA-159236 )
Rev-mediated nuclear export of HIV RNA (R-HSA-165054 )
Transport of Ribonucleoproteins into the Host Nucleus (R-HSA-168271 )
NS1 Mediated Effects on Host Pathways (R-HSA-168276 )
Viral Messenger RNA Synthesis (R-HSA-168325 )
NEP/NS2 Interacts with the Cellular Export Machinery (R-HSA-168333 )
Regulation of Glucokinase by Glucokinase Regulatory Protein (R-HSA-170822 )
Nuclear import of Rev protein (R-HSA-180746 )
Vpr-mediated nuclear import of PICs (R-HSA-180910 )
snRNP Assembly (R-HSA-191859 )
SUMOylation of DNA damage response and repair proteins (R-HSA-3108214 )
SUMOylation of ubiquitinylation proteins (R-HSA-3232142 )
Nuclear Pore Complex (NPC) Disassembly (R-HSA-3301854 )
Regulation of HSF1-mediated heat shock response (R-HSA-3371453 )
SUMOylation of SUMOylation proteins (R-HSA-4085377 )
SUMOylation of chromatin organization proteins (R-HSA-4551638 )
SUMOylation of RNA binding proteins (R-HSA-4570464 )
SUMOylation of DNA replication proteins (R-HSA-4615885 )
Transcriptional regulation by small RNAs (R-HSA-5578749 )
Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC) (R-HSA-5619107 )
tRNA processing in the nucleus (R-HSA-6784531 )
HCMV Early Events (R-HSA-9609690 )
HCMV Late Events (R-HSA-9610379 )
SARS-CoV-2 activates/modulates innate and adaptive immune responses (R-HSA-9705671 )
ISG15 antiviral mechanism (R-HSA-1169408 )

Molecular Interaction Atlas (MIA) of This DOT

12 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Acute lymphocytic leukaemia DISPX75S Strong Biomarker [1]
Breast cancer DIS7DPX1 Strong Altered Expression [2]
Breast carcinoma DIS2UE88 Strong Altered Expression [2]
Colorectal carcinoma DIS5PYL0 Strong Altered Expression [3]
Fetal akinesia deformation sequence 4 DISGIHHK Strong Autosomal recessive [4]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [5]
HIV infectious disease DISO97HC Strong Biomarker [6]
Neoplasm DISZKGEW Strong Biomarker [7]
Rheumatoid arthritis DISTSB4J Strong Genetic Variation [8]
Advanced cancer DISAT1Z9 moderate Biomarker [9]
Fetal akinesia deformation sequence 1 DISKDI9L Supportive Autosomal recessive [4]
Intestinal neoplasm DISK0GUH Limited Biomarker [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Methotrexate DM2TEOL Approved Nuclear pore complex protein Nup88 (NUP88) affects the response to substance of Methotrexate. [27]
------------------------------------------------------------------------------------
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Nuclear pore complex protein Nup88 (NUP88). [10]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Nuclear pore complex protein Nup88 (NUP88). [11]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Nuclear pore complex protein Nup88 (NUP88). [12]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Nuclear pore complex protein Nup88 (NUP88). [13]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Nuclear pore complex protein Nup88 (NUP88). [14]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Nuclear pore complex protein Nup88 (NUP88). [15]
Piroxicam DMTK234 Approved Piroxicam decreases the expression of Nuclear pore complex protein Nup88 (NUP88). [17]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Nuclear pore complex protein Nup88 (NUP88). [18]
DNCB DMDTVYC Phase 2 DNCB increases the expression of Nuclear pore complex protein Nup88 (NUP88). [19]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the mutagenesis of Nuclear pore complex protein Nup88 (NUP88). [20]
Eugenol DM7US1H Patented Eugenol increases the expression of Nuclear pore complex protein Nup88 (NUP88). [19]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Nuclear pore complex protein Nup88 (NUP88). [23]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Nuclear pore complex protein Nup88 (NUP88). [24]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Nuclear pore complex protein Nup88 (NUP88). [25]
Deguelin DMXT7WG Investigative Deguelin decreases the expression of Nuclear pore complex protein Nup88 (NUP88). [26]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Quercetin DM3NC4M Approved Quercetin increases the phosphorylation of Nuclear pore complex protein Nup88 (NUP88). [16]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Nuclear pore complex protein Nup88 (NUP88). [22]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
LY294002 DMY1AFS Phase 1 LY294002 affects the localization of Nuclear pore complex protein Nup88 (NUP88). [21]
PD98059 DMZC90M Investigative PD98059 affects the localization of Nuclear pore complex protein Nup88 (NUP88). [21]
------------------------------------------------------------------------------------

References

1 The nuclear pore proteins Nup88/214 and T-cell acute lymphatic leukemia-associated NUP214 fusion proteins regulate Notch signaling.J Biol Chem. 2019 Aug 2;294(31):11741-11750. doi: 10.1074/jbc.RA118.006357. Epub 2019 Jun 11.
2 Nup88 mRNA overexpression is associated with high aggressiveness of breast cancer.Int J Cancer. 2004 May 1;109(5):717-20. doi: 10.1002/ijc.20034.
3 Increased serum level of Nup88 protein is associated with the development of colorectal cancer.Med Oncol. 2012 Sep;29(3):1789-95. doi: 10.1007/s12032-011-0047-1. Epub 2011 Aug 24.
4 Biallelic mutations in nucleoporin NUP88 cause lethal fetal akinesia deformation sequence. PLoS Genet. 2018 Dec 13;14(12):e1007845. doi: 10.1371/journal.pgen.1007845. eCollection 2018 Dec.
5 Nucleoporin 88 expression in hepatitis B and C virus-related liver diseases.World J Gastroenterol. 2006 Sep 28;12(36):5870-4. doi: 10.3748/wjg.v12.i36.5870.
6 Host cell gene expression during human immunodeficiency virus type 1 latency and reactivation and effects of targeting genes that are differentially expressed in viral latency.J Virol. 2004 Sep;78(17):9458-73. doi: 10.1128/JVI.78.17.9458-9473.2004.
7 The role of vimentin in the tumor marker Nup88-dependent multinucleated phenotype.BMC Cancer. 2018 May 3;18(1):519. doi: 10.1186/s12885-018-4454-y.
8 Genetic influences on susceptibility to rheumatoid arthritis in African-Americans.Hum Mol Genet. 2019 Mar 1;28(5):858-874. doi: 10.1093/hmg/ddy395.
9 Nuclear pore protein NUP88 activates anaphase-promoting complex to promote aneuploidy.J Clin Invest. 2016 Feb;126(2):543-59. doi: 10.1172/JCI82277. Epub 2016 Jan 5.
10 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
11 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
12 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
13 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
14 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
15 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
16 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
17 Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS One. 2011;6(8):e23569.
18 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
19 Microarray analyses in dendritic cells reveal potential biomarkers for chemical-induced skin sensitization. Mol Immunol. 2007 May;44(12):3222-33.
20 Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells. Mutat Res Genet Toxicol Environ Mutagen. 2014 Dec;775-776:48-54. doi: 10.1016/j.mrgentox.2014.10.011. Epub 2014 Nov 4.
21 Dissecting the signaling events that impact classical nuclear import and target nuclear transport factors. PLoS One. 2009 Dec 24;4(12):e8420. doi: 10.1371/journal.pone.0008420.
22 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
23 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
24 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
25 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
26 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
27 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.