General Information of Drug Off-Target (DOT) (ID: OT6XY8Y9)

DOT Name Rho GTPase-activating protein 21 (ARHGAP21)
Synonyms Rho GTPase-activating protein 10; Rho-type GTPase-activating protein 21
Gene Name ARHGAP21
Related Disease
Neoplasm ( )
Adult glioblastoma ( )
Age-related macular degeneration ( )
Glioblastoma multiforme ( )
Head-neck squamous cell carcinoma ( )
Influenza ( )
Neovascular age-related macular degeneration ( )
Obesity ( )
Prostate adenocarcinoma ( )
Prostate cancer ( )
Prostate carcinoma ( )
Autosomal dominant prognathism ( )
UniProt ID
RHG21_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2DHJ; 2J59; 2YUY
Pfam ID
PF17820 ; PF00169 ; PF00620
Sequence
MMATRRTGLSEGDGDKLKACEVSKNKDGKEQSETVSLSEDETFSWPGPKTVTLKRTSQGF
GFTLRHFIVYPPESAIQFSYKDEENGNRGGKQRNRLEPMDTIFVKQVKEGGPAFEAGLCT
GDRIIKVNGESVIGKTYSQVIALIQNSDTTLELSVMPKDEDILQVLQFTKDVTALAYSQD
AYLKGNEAYSGNARNIPEPPPICYPWLPSAPSAMAQPVEISPPDSSLSKQQTSTPVLTQP
GRAYRMEIQVPPSPTDVAKSNTAVCVCNESVRTVIVPSEKVVDLLSNRNNHTGPSHRTEE
VRYGVSEQTSLKTVSRTTSPPLSIPTTHLIHQPAGSRSLEPSGILLKSGNYSGHSDGISS
SRSQAVEAPSVSVNHYSPNSHQHIDWKNYKTYKEYIDNRRLHIGCRTIQERLDSLRAASQ
STTDYNQVVPNRTTLQGRRRSTSHDRVPQSVQIRQRSVSQERLEDSVLMKYCPRSASQGA
LTSPSVSFSNHRTRSWDYIEGQDETLENVNSGTPIPDSNGEKKQTYKWSGFTEQDDRRGI
CERPRQQEIHKSFRGSNFTVAPSVVNSDNRRMSGRGVGSVSQFKKIPPDLKTLQSNRNFQ
TTCGMSLPRGISQDRSPLVKVRSNSLKAPSTHVTKPSFSQKSFVSIKDQRPVNHLHQNSL
LNQQTWVRTDSAPDQQVETGKSPSLSGASAKPAPQSSENAGTSDLELPVSQRNQDLSLQE
AETEQSDTLDNKEAVILREKPPSGRQTPQPLRHQSYILAVNDQETGSDTTCWLPNDARRE
VHIKRMEERKASSTSPPGDSLASIPFIDEPTSPSIDHDIAHIPASAVISASTSQVPSIAT
VPPCLTTSAPLIRRQLSHDHESVGPPSLDAQPNSKTERSKSYDEGLDDYREDAKLSFKHV
SSLKGIKIADSQKSSEDSGSRKDSSSEVFSDAAKEGWLHFRPLVTDKGKRVGGSIRPWKQ
MYVVLRGHSLYLYKDKREQTTPSEEEQPISVNACLIDISYSETKRKNVFRLTTSDCECLF
QAEDRDDMLAWIKTIQESSNLNEEDTGVTNRDLISRRIKEYNNLMSKAEQLPKTPRQSLS
IRQTLLGAKSEPKTQSPHSPKEESERKLLSKDDTSPPKDKGTWRKGIPSIMRKTFEKKPT
ATGTFGVRLDDCPPAHTNRYIPLIVDICCKLVEERGLEYTGIYRVPGNNAAISSMQEELN
KGMADIDIQDDKWRDLNVISSLLKSFFRKLPEPLFTNDKYADFIEANRKEDPLDRLKTLK
RLIHDLPEHHYETLKFLSAHLKTVAENSEKNKMEPRNLAIVFGPTLVRTSEDNMTHMVTH
MPDQYKIVETLIQHHDWFFTEEGAEEPLTTVQEESTVDSQPVPNIDHLLTNIGRTGVSPG
DVSDSATSDSTKSKGSWGSGKDQYSRELLVSSIFAAASRKRKKPKEKAQPSSSEDELDNV
FFKKENVEQCHNDTKEESKKESETLGRKQKIIIAKENSTRKDPSTTKDEKISLGKESTPS
EEPSPPHNSKHNKSPTLSCRFAILKESPRSLLAQKSSHLEETGSDSGTLLSTSSQASLAR
FSMKKSTSPETKHSEFLANVSTITSDYSTTSSATYLTSLDSSRLSPEVQSVAESKGDEAD
DERSELISEGRPVETDSESEFPVFPTALTSERLFRGKLQEVTKSSRRNSEGSELSCTEGS
LTSSLDSRRQLFSSHKLIECDTLSRKKSARFKSDSGSLGDAKNEKEAPSLTKVFDVMKKG
KSTGSLLTPTRGESEKQEPTWKTKIADRLKLRPRAPADDMFGVGNHKVNAETAKRKSIRR
RHTLGGHRDATEISVLNFWKVHEQSGERESELSAVNRLKPKCSAQDLSISDWLARERLRT
STSDLSRGEIGDPQTENPSTREIATTDTPLSLHCNTGSSSSTLASTNRPLLSIPPQSPDQ
INGESFQNVSKNASSAANAQPHKLSETPGSKAEFHPCL
Function
Functions as a GTPase-activating protein (GAP) for RHOA and CDC42. Downstream partner of ARF1 which may control Golgi apparatus structure and function. Also required for CTNNA1 recruitment to adherens junctions.
Tissue Specificity Widely expressed with higher expression in brain, heart, skeletal muscle and placenta.
Reactome Pathway
RHOB GTPase cycle (R-HSA-9013026 )
RHOC GTPase cycle (R-HSA-9013106 )
CDC42 GTPase cycle (R-HSA-9013148 )
RAC1 GTPase cycle (R-HSA-9013149 )
RAC2 GTPase cycle (R-HSA-9013404 )
RHOD GTPase cycle (R-HSA-9013405 )
RHOQ GTPase cycle (R-HSA-9013406 )
RHOG GTPase cycle (R-HSA-9013408 )
RHOJ GTPase cycle (R-HSA-9013409 )
RAC3 GTPase cycle (R-HSA-9013423 )
RHOF GTPase cycle (R-HSA-9035034 )
RND3 GTPase cycle (R-HSA-9696264 )
RHOA GTPase cycle (R-HSA-8980692 )

Molecular Interaction Atlas (MIA) of This DOT

12 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Neoplasm DISZKGEW Definitive Biomarker [1]
Adult glioblastoma DISVP4LU Strong Altered Expression [2]
Age-related macular degeneration DIS0XS2C Strong Genetic Variation [3]
Glioblastoma multiforme DISK8246 Strong Altered Expression [2]
Head-neck squamous cell carcinoma DISF7P24 Strong Altered Expression [2]
Influenza DIS3PNU3 Strong Biomarker [4]
Neovascular age-related macular degeneration DIS5S9R7 Strong Genetic Variation [3]
Obesity DIS47Y1K Strong Biomarker [5]
Prostate adenocarcinoma DISBZYU8 Strong Biomarker [2]
Prostate cancer DISF190Y Strong Biomarker [2]
Prostate carcinoma DISMJPLE Strong Biomarker [2]
Autosomal dominant prognathism DIS2G3FF moderate Biomarker [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Rho GTPase-activating protein 21 (ARHGAP21). [7]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Rho GTPase-activating protein 21 (ARHGAP21). [8]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Rho GTPase-activating protein 21 (ARHGAP21). [11]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Rho GTPase-activating protein 21 (ARHGAP21). [12]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Rho GTPase-activating protein 21 (ARHGAP21). [13]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the mutagenesis of Rho GTPase-activating protein 21 (ARHGAP21). [14]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Rho GTPase-activating protein 21 (ARHGAP21). [15]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Rho GTPase-activating protein 21 (ARHGAP21). [17]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Rho GTPase-activating protein 21 (ARHGAP21). [18]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Rho GTPase-activating protein 21 (ARHGAP21). [19]
Hydroxydimethylarsine Oxide DMPS2B1 Investigative Hydroxydimethylarsine Oxide increases the expression of Rho GTPase-activating protein 21 (ARHGAP21). [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
5 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Rho GTPase-activating protein 21 (ARHGAP21). [9]
Quercetin DM3NC4M Approved Quercetin decreases the phosphorylation of Rho GTPase-activating protein 21 (ARHGAP21). [10]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Rho GTPase-activating protein 21 (ARHGAP21). [10]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Rho GTPase-activating protein 21 (ARHGAP21). [16]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of Rho GTPase-activating protein 21 (ARHGAP21). [10]
------------------------------------------------------------------------------------

References

1 ARHGAP21 modulates FAK activity and impairs glioblastoma cell migration.Biochim Biophys Acta. 2009 May;1793(5):806-16. doi: 10.1016/j.bbamcr.2009.02.010. Epub 2009 Mar 4.
2 ARHGAP21 is a RhoGAP for RhoA and RhoC with a role in proliferation and migration of prostate adenocarcinoma cells.Biochim Biophys Acta. 2013 Feb;1832(2):365-74. doi: 10.1016/j.bbadis.2012.11.010. Epub 2012 Nov 28.
3 A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.Nat Genet. 2016 Feb;48(2):134-43. doi: 10.1038/ng.3448. Epub 2015 Dec 21.
4 Transport of influenza virus neuraminidase (NA) to host cell surface is regulated by ARHGAP21 and Cdc42 proteins.J Biol Chem. 2012 Mar 23;287(13):9804-9816. doi: 10.1074/jbc.M111.312959. Epub 2012 Feb 8.
5 Whole-Body ARHGAP21-Deficiency Improves Energetic Homeostasis in Lean and Obese Mice.Front Endocrinol (Lausanne). 2019 May 29;10:338. doi: 10.3389/fendo.2019.00338. eCollection 2019.
6 Genetic association of ARHGAP21 gene variant with mandibular prognathism.J Dent Res. 2015 Apr;94(4):569-76. doi: 10.1177/0022034515572190. Epub 2015 Feb 17.
7 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
8 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
9 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
10 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
11 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
12 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
13 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
14 Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells. Mutat Res Genet Toxicol Environ Mutagen. 2014 Dec;775-776:48-54. doi: 10.1016/j.mrgentox.2014.10.011. Epub 2014 Nov 4.
15 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
16 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
17 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
18 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
19 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
20 Identification of interspecies concordance of mechanisms of arsenic-induced bladder cancer. Toxicol In Vitro. 2007 Dec;21(8):1513-29. doi: 10.1016/j.tiv.2007.06.021. Epub 2007 Jul 21.