General Information of Disease (ID: DISF7P24)

Disease Name Head-neck squamous cell carcinoma
Synonyms
squamous cell carcinoma, head and neck; carcinoma of the head and neck; squamous cell carcinoma, head and neck, somatic; HNSCC; squamous cell carcinoma of head and neck; head and neck squamous cell carcinoma; craniocervical region squamous cell carcinoma; squamous cell carcinoma of the head and neck; SCCHN; squamous cell carcinomas of head and neck
Disease Class 2D60: Metastatic lymph node neoplasm
Definition A squamous cell carcinoma that arises from any of the following anatomic sites: lip and oral cavity, nasal cavity, paranasal sinuses, pharynx, larynx, and salivary glands.
Disease Hierarchy
DISQVIFL: Squamous cell carcinoma
DISOU1DS: Head and neck carcinoma
DISF7P24: Head-neck squamous cell carcinoma
ICD Code
ICD-11
ICD-11: 2D60.0
ICD-10
ICD-10: C77.0
Disease Identifiers
MONDO ID
MONDO_0010150
MESH ID
D000077195
UMLS CUI
C1168401
OMIM ID
275355
MedGen ID
257911
SNOMED CT ID
716659002

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 3 Clinical Trial Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Mulitkine DMLHI93 Phase 3 NA [1]
Ozuriftamab vedotin DMOI00X Phase 2 Antibody drug conjugate [2]
SB 11285 DMZ9YWG Phase 1 NA [3]
------------------------------------------------------------------------------------

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 368 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
ABCB1 TT3OT40 Limited Biomarker [4]
ABCC2 TTFLHJV Limited Altered Expression [5]
ABCG2 TTIMJ02 Limited Altered Expression [6]
AKT1 TTWTSCV Limited Biomarker [7]
ALDH2 TTFLN4T Limited Altered Expression [8]
ATG2B TTG6KCU Limited Genetic Variation [9]
BBC3 TT7JUKC Limited Biomarker [10]
BSG TT5UJWD Limited Biomarker [11]
CCND1 TTFCJ7S Limited Altered Expression [12]
CYP1A2 TTS1DTU Limited Genetic Variation [13]
DKK3 TTY2ZV6 Limited Biomarker [14]
DYRK1A TTSBVFO Limited Biomarker [15]
EIF4E TTZGCP6 Limited Biomarker [16]
ERBB4 TTWALCO Limited Biomarker [17]
FAT1 TTGUJYV Limited Altered Expression [18]
FHIT TTMS54D Limited Biomarker [19]
GPNMB TT7315J Limited Altered Expression [20]
HPGDS TTCYE56 Limited Altered Expression [21]
IL1RAP TTWS50K Limited Biomarker [22]
ITGB1 TTBVIQC Limited Biomarker [23]
KLF4 TTTI53X Limited Altered Expression [24]
MCL1 TTL53M6 Limited Altered Expression [25]
MDM2 TT9TE0O Limited Altered Expression [26]
MDM4 TT9OUDQ Limited Biomarker [27]
MMP14 TTJ4QE7 Limited Biomarker [28]
NFE2L2 TTA6ZN2 Limited Biomarker [29]
NOTCH1 TTB1STW Limited Biomarker [30]
PRKD1 TTSLUMT Limited Altered Expression [31]
PTK2 TTON5IT Limited Altered Expression [32]
RAD51 TTC0G1L Limited Biomarker [33]
RRM2 TT1S4LJ Limited Biomarker [34]
TGFBR1 TTP4520 Limited Biomarker [35]
TNFRSF10B TTW20TU Limited Autosomal dominant [36]
TNFRSF10B TTW20TU Limited Altered Expression [37]
CA9 TT2LVK8 Disputed Biomarker [38]
ACACB TTY84UG moderate Biomarker [39]
ADORA2A TTM2AOE moderate Genetic Variation [40]
ADORA2B TTNE7KG moderate Biomarker [41]
AGR2 TT9K86S moderate Biomarker [42]
ANGPTL4 TTWALY5 moderate Altered Expression [43]
ARF1 TT70KXY moderate Altered Expression [44]
ATF4 TTQCKWT moderate Biomarker [45]
BCL2A1 TTGT9C7 moderate Biomarker [39]
BIRC2 TTQ5LRD moderate Biomarker [46]
BRIP1 TTZV7LJ moderate Biomarker [47]
BST2 TT90BJT moderate Biomarker [48]
CBL TT7QT13 moderate Altered Expression [49]
CBR1 TTVG0SN moderate Biomarker [50]
CD200 TT0BE68 moderate Altered Expression [51]
CD276 TT6CQUM moderate Biomarker [52]
CD33 TTJVYO3 moderate Biomarker [53]
CD70 TTNCIE0 moderate Altered Expression [54]
CDK6 TTO0FDJ moderate Biomarker [55]
CDK7 TTQYF7G moderate Altered Expression [56]
CEACAM1 TTA9CK4 moderate Biomarker [57]
CSE1L TTTRULD moderate Biomarker [58]
CTSH TT3G406 moderate Biomarker [59]
CUL3 TTPCU0Q moderate Biomarker [60]
DCLK1 TTOHTCY moderate Biomarker [61]
DDX58 TTVB0O3 moderate Biomarker [62]
DIABLO TTN74LE moderate Biomarker [63]
DTL TT8396I moderate Altered Expression [64]
ECE1 TTQ9RYT moderate Biomarker [65]
EIF4EBP1 TTKGEBL moderate Biomarker [16]
ENTPD1 TTYM8DJ moderate Altered Expression [66]
EPHA3 TTHS2LR moderate Biomarker [67]
EPHB1 TT8MDAC moderate Biomarker [68]
EREG TTYSB89 moderate Altered Expression [69]
FANCA TTV5HJS moderate Biomarker [70]
FGF19 TTGCH11 moderate Biomarker [71]
FLT4 TTDCBX5 moderate Altered Expression [72]
FOLR2 TTT54CI moderate Biomarker [73]
FTH1 TT975ZT moderate Altered Expression [74]
GNG7 TTCMBKF moderate Posttranslational Modification [75]
GNRHR TT8R70G moderate Biomarker [76]
GRK2 TTAZ3MN moderate Altered Expression [77]
ID2 TTW8A5N moderate Altered Expression [78]
IFNAR1 TTSYFMA moderate Altered Expression [79]
IGFBP5 TTDWEA8 moderate Genetic Variation [80]
IL13RA2 TTMPZ7V moderate Biomarker [81]
IL24 TT1EPXZ moderate Genetic Variation [82]
ITGA11 TTANXZ7 moderate Altered Expression [83]
ITK TT3C80U moderate Biomarker [84]
KDM5B TTCLI75 moderate Altered Expression [85]
KIR2DL2 TTU0P73 moderate Genetic Variation [86]
KLRK1 TTLRN4A moderate Biomarker [87]
LAMB3 TT2WOUQ moderate Altered Expression [88]
LAPTM4B TTEJQT0 moderate Altered Expression [89]
LASP1 TTZJA87 moderate Altered Expression [90]
LTA TTP73TM moderate Altered Expression [91]
LTF TTSZDQU moderate Biomarker [92]
LYN TT1RWNJ moderate Altered Expression [53]
MAPK1 TT4TQBX moderate Altered Expression [93]
MAPKAPK2 TTMUG9D moderate Biomarker [94]
MLANA TT362RB moderate Altered Expression [95]
MVD TTE5J6X moderate Biomarker [96]
MYH2 TTBIL13 moderate Biomarker [97]
NEDD8 TTNDC4K moderate Biomarker [98]
NEK2 TT3VZ24 moderate Biomarker [99]
NR1H2 TTXA6PH moderate Genetic Variation [100]
NSD1 TTTSJ3H moderate Genetic Variation [101]
NTSR1 TTTUMEP moderate Biomarker [102]
OLFM4 TTK1CX7 moderate Altered Expression [103]
PFKFB3 TTTHMQJ moderate Altered Expression [91]
PNP TTMCF1Y moderate Biomarker [104]
POLB TTA0XPV moderate Altered Expression [105]
PTK7 TTXH2ZN moderate Biomarker [106]
PYGM TTZHY6R moderate Biomarker [107]
RHCG TTN5MZ3 moderate Biomarker [108]
RICTOR TT143WL moderate Altered Expression [109]
RIPK1 TTVJHX8 moderate Biomarker [110]
SLC16A3 TTG6VD5 moderate Altered Expression [111]
SLC2A4 TTP6MT5 moderate Biomarker [112]
SLC38A2 TTUSC27 moderate Altered Expression [113]
SLC47A1 TTMHCGA moderate Biomarker [114]
SLC7A11 TTBZMIO moderate Biomarker [115]
SLC9A1 TTGSEFH moderate Altered Expression [116]
SLCO1A2 TTUGD21 moderate Altered Expression [117]
SLCO1B3 TTU86P0 moderate Altered Expression [117]
SLCO2A1 TTKVTQO moderate Biomarker [117]
SLCO2B1 TTDL3UZ moderate Altered Expression [117]
SPOCK1 TTF23RE moderate Altered Expression [118]
STOML2 TTOI329 moderate Biomarker [119]
TACSTD2 TTP2HE5 moderate Biomarker [120]
TGFB3 TTWOMY8 moderate Biomarker [121]
TIGIT TTWNL74 moderate Biomarker [122]
TLR8 TT8CWFK moderate Biomarker [123]
TMSB4X TTMVAIU moderate Biomarker [124]
TNFRSF4 TTL31H0 moderate Genetic Variation [125]
TNNC2 TTYUMF5 moderate Biomarker [107]
TP53BP1 TTX4UE9 moderate Altered Expression [126]
TRIP12 TTG2CRH moderate Altered Expression [126]
ABCC1 TTOI92F Strong Altered Expression [127]
ABCC3 TTVLG21 Strong Biomarker [117]
ADH7 TT3LE7P Strong Genetic Variation [128]
AIMP2 TTXWHGF Strong Altered Expression [93]
ANO1 TTOJI4S Strong Altered Expression [129]
ANXA5 TT2Z83I Strong Biomarker [130]
AREG TT76B3W Strong Altered Expression [69]
ARG2 TTV1AG6 Strong Altered Expression [131]
ATP2A2 TTE6THL Strong Genetic Variation [132]
AURKA TTPS3C0 Strong Biomarker [133]
AURKB TT9RTBL Strong Biomarker [134]
AVP TTJ8EWH Strong Genetic Variation [135]
AXL TTZPY6J Strong Biomarker [136]
AZGP1 TTUPYLV Strong Altered Expression [137]
B2M TTY7FKA Strong Genetic Variation [138]
BUB1 TT78309 Strong Genetic Variation [139]
CALCR TTLWS2O Strong Genetic Variation [140]
CASP6 TTKW4ML Strong Genetic Variation [141]
CASP7 TTM7Y45 Strong Genetic Variation [141]
CASP8 TT6SZNG Strong Genetic Variation [142]
CCL23 TTHAPJK Strong Biomarker [143]
CCR4 TT7HQD0 Strong Altered Expression [144]
CCR7 TT2GIDQ Strong Biomarker [145]
CD163 TTTZ9DE Strong Biomarker [146]
CD1A TTBGTFN Strong Biomarker [147]
CD274 TT8ZLTI Strong Altered Expression [148]
CD46 TTMS7DF Strong Biomarker [149]
CD47 TT28S46 Strong Biomarker [150]
CD69 TTPQE9F Strong Altered Expression [151]
CD9 TTZEIBV Strong Altered Expression [152]
CDC25A TTLZS4Q Strong Biomarker [153]
CDH11 TTRGWZC Strong Biomarker [154]
CDK4 TT0PG8F Strong Biomarker [155]
CDK9 TT1LVF2 Strong Biomarker [98]
CEACAM6 TTIGH2W Strong Altered Expression [156]
CEBPA TT5LWG1 Strong Biomarker [157]
COL1A2 TTUABC1 Strong Altered Expression [158]
CREBBP TTFRCTK Strong Biomarker [159]
CRK TTFEUYR Strong Altered Expression [93]
CSNK2A2 TT7GR5W Strong Biomarker [160]
CSPG4 TT7MYXI Strong Altered Expression [161]
CTCFL TTY0RZT Strong Altered Expression [162]
CTLA4 TTI2S1D Strong Biomarker [163]
CXCL12 TT4UGTF Strong Biomarker [158]
CYP1B1 TTI84H7 Strong Genetic Variation [164]
CYP26A1 TTD7Q0R Strong Altered Expression [165]
CYP2E1 TTWVHQ5 Strong Genetic Variation [166]
CYP2J2 TTNE1C7 Strong Altered Expression [167]
DDC TTN451K Strong Altered Expression [168]
DDIT4 TTVEOY6 Strong Altered Expression [169]
DDR2 TTU98HG Strong Altered Expression [170]
DDX5 TTZKPVC Strong Altered Expression [171]
DEK TT1NMGV Strong Altered Expression [172]
DHCR24 TTTK0NH Strong Biomarker [173]
DOT1L TTSZ8T1 Strong Altered Expression [174]
DSG3 TTEO4P8 Strong Altered Expression [175]
DUSP5 TTZN92A Strong Biomarker [134]
E2F1 TTASI04 Strong Biomarker [176]
E2F2 TT5FYX0 Strong Genetic Variation [176]
E2F3 TTWIJYH Strong Altered Expression [177]
EBI3 TTJF68X Strong Altered Expression [178]
EDNRB TT3ZTGU Strong Biomarker [179]
EGF TTED8JB Strong Biomarker [180]
EIF2AK2 TTXEZJ4 Strong Biomarker [181]
ELAVL1 TTPC9D0 Strong Altered Expression [182]
EP300 TTGH73N Strong Genetic Variation [183]
EPCAM TTZ8WH4 Strong Altered Expression [184]
EPHA1 TTLFZVU Strong Biomarker [185]
EPHA2 TTRJB2G Strong Biomarker [186]
EPHA8 TTHZ2LW Strong Altered Expression [187]
EPHB3 TT5LM7U Strong Biomarker [188]
EPHB4 TTI4ZX2 Strong Altered Expression [189]
ERBB3 TTSINU2 Strong Biomarker [190]
ETS1 TTTGPSD Strong Altered Expression [191]
F11R TT3C8EG Strong Biomarker [192]
FCGR3A TTIFOC0 Strong Biomarker [193]
FGF7 TTFY134 Strong Biomarker [194]
FGFR3 TTST7KB Strong Genetic Variation [195]
FGFR4 TT1KX2S Strong Altered Expression [187]
FHL1 TTI7ENL Strong Altered Expression [196]
FOXM1 TTD3KOX Strong Altered Expression [197]
GAL TTXZAJ5 Strong Biomarker [198]
GALR1 TTX3HNZ Strong Biomarker [199]
GALR2 TTBPW3J Strong Posttranslational Modification [200]
GEM TTAZF9M Strong Biomarker [201]
GMNN TT390KA Strong Biomarker [33]
GRPR TTC1MVT Strong Altered Expression [202]
GSTO1 TTWO3SH Strong Genetic Variation [203]
HDAC9 TT8M4E1 Strong Biomarker [204]
HDGF TTKGV26 Strong Biomarker [205]
HMGA2 TTSTVM0 Strong Altered Expression [206]
HMGB2 TTA78JQ Strong Biomarker [207]
HOXA5 TTXSVQP Strong Biomarker [208]
HPSE TTR7GJO Strong Biomarker [209]
HSPB3 TTLH8WG Strong Altered Expression [210]
IFNL3 TTRF4Q2 Strong Therapeutic [211]
IGF1 TTT6LOU Strong Biomarker [212]
IGFBP3 TTZHNQA Strong Biomarker [213]
IGFBP7 TTUQ01B Strong Altered Expression [214]
IL1A TTPM6HI Strong Altered Expression [215]
IL4R TTDWHC3 Strong Biomarker [216]
INHBA TTVB30D Strong Biomarker [217]
IRS1 TTAJSQ0 Strong Biomarker [212]
KCNH1 TT9XKUC Strong Biomarker [218]
KIF11 TTBGTCW Strong Biomarker [219]
KIR2DS1 TTVWAGF Strong Biomarker [86]
KIR3DL2 TTQH3N0 Strong Altered Expression [201]
KISS1 TTU2O6T Strong Therapeutic [220]
KLK8 TTH5MRS Strong Altered Expression [221]
KNG1 TTDJ4MY Strong Biomarker [222]
KRT17 TTKV0EC Strong Altered Expression [223]
KRT19 TT3JF9E Strong Altered Expression [224]
LAMP1 TTC214J Strong Altered Expression [151]
LDHA TTW76JE Strong Biomarker [225]
LGALS1 TTO3NYT Strong Biomarker [226]
LOXL2 TTFSUHX Strong Biomarker [227]
LPAR4 TT7ZMY4 Strong Altered Expression [228]
LRP1 TTF2V7I Strong Biomarker [229]
LTB TTHQ6US Strong Genetic Variation [230]
LY6D TTINE9B Strong Altered Expression [231]
LY6K TT5GKHN Strong Biomarker [232]
LYVE1 TTG8DNU Strong Biomarker [233]
MAGEA1 TT63M7Q Strong Altered Expression [234]
MAGEA3 TTWSKHD Strong Biomarker [234]
MAP2K1 TTIDAPM Strong Biomarker [235]
MAP2K2 TT8H9GB Strong Genetic Variation [138]
MAP2K7 TT6QY3J Strong Biomarker [236]
MAP3K8 TTGECUM Strong Genetic Variation [237]
MAPK10 TT056SO Strong Altered Expression [238]
MCM7 TT1RM3F Strong Biomarker [239]
MELK TTBZOTY Strong Biomarker [240]
MERTK TTO7LKR Strong Biomarker [136]
MLH1 TTISG27 Strong Posttranslational Modification [241]
MMP1 TTMX39J Strong Biomarker [242]
MMP10 TTXLEG7 Strong Biomarker [243]
MMP17 TTVSZKN Strong Altered Expression [244]
MMP3 TTUZ2L5 Strong Genetic Variation [245]
MRC1 TTKV8W5 Strong Biomarker [246]
MSMB TTYH1ZK Strong Posttranslational Modification [247]
MTDH TTH6SA5 Strong Biomarker [248]
MTR TTUTO39 Strong Genetic Variation [249]
NAMPT TTD1WIG Strong Biomarker [250]
NCR1 TTQNRJM Strong Biomarker [251]
NDUFA13 TTRU1NG Strong Posttranslational Modification [252]
NEDD9 TT1UREA Strong Biomarker [253]
NEK7 TTJ5SWP Strong Altered Expression [254]
NGFR TTEDJN4 Strong Altered Expression [255]
NLRX1 TTKT026 Strong Biomarker [256]
NME1 TTDY8JH Strong Altered Expression [257]
NR1I2 TT7LCTF Strong Altered Expression [258]
NR4A2 TT9HKN3 Strong Biomarker [259]
NT5E TTK0O6Y Strong Biomarker [260]
NUAK1 TT65FL0 Strong Biomarker [261]
OAT TTTSCQ2 Strong Biomarker [131]
OGFR TT6IEYX Strong Biomarker [262]
OGG1 TTRU01G Strong Genetic Variation [263]
P2RX1 TTJW7B3 Strong Altered Expression [264]
P2RX3 TT2THBD Strong Altered Expression [264]
P2RX4 TT1NLOA Strong Altered Expression [264]
P2RY1 TTA93TL Strong Altered Expression [264]
P2RY2 TTOZHQC Strong Altered Expression [264]
P4HA1 TTNH25W Strong Biomarker [265]
PCSK7 TTD30LY Strong Altered Expression [266]
PDCD1 TTNBFWK Strong Biomarker [148]
PDCD1LG2 TTW14O3 Strong Altered Expression [267]
PDE5A TTJ0IQB Strong Biomarker [268]
PDK1 TTCZOF2 Strong Biomarker [30]
PECAM1 TT4EZB2 Strong Biomarker [91]
PIK3CA TTEUNMR Strong Biomarker [269]
PIK3CB TT9H4P3 Strong Biomarker [269]
PIN1 TTJNTSI Strong Genetic Variation [270]
PKN2 TTTHO0M Strong Biomarker [271]
POSTN TT8ALTZ Strong Biomarker [158]
PRDX4 TTPBL9I Strong Biomarker [272]
PRLR TTBPXMA Strong Biomarker [273]
PSMD10 TT2H4LN Strong Altered Expression [274]
PTGER3 TTPNGDE Strong Altered Expression [275]
PTGES TTYLQ8V Strong Altered Expression [276]
PTK2B TTTEFBV Strong Biomarker [225]
PTPN13 TT405FP Strong Biomarker [277]
PTPRJ TTWMKXP Strong Biomarker [278]
RAC1 TT2M9CG Strong Genetic Variation [138]
RACK1 TTJ10AL Strong Biomarker [279]
RARG TT1Q3IE Strong Altered Expression [280]
REL TT1ZCTH Strong Biomarker [281]
RHOA TTP2U16 Strong Genetic Variation [138]
RPE65 TTBOH16 Strong Biomarker [282]
RPS6KA3 TTUM2ZR Strong Biomarker [210]
S100A4 TTPR5SX Strong Altered Expression [283]
S100A8 TT4AF6N Strong Biomarker [284]
SAA1 TTY0DN9 Strong Altered Expression [285]
SEMA4D TT5UT28 Strong Biomarker [286]
SERPINB3 TT6QLPX Strong Biomarker [287]
SERPINH1 TTPSWQG Strong Altered Expression [288]
SLC1A5 TTF7WRM Strong Biomarker [113]
SLC22A3 TTG2UMS Strong Biomarker [84]
SLC3A2 TT5CZSM Strong Altered Expression [289]
SLC6A8 TTYUHB5 Strong Genetic Variation [140]
SLC7A5 TTPH2JB Strong Altered Expression [289]
SMYD2 TT7YJFO Strong Biomarker [290]
SOCS3 TTI0ME6 Strong Biomarker [291]
SOD2 TT9O4C5 Strong Altered Expression [8]
SOX2 TTCNOT6 Strong Biomarker [240]
SPHK1 TTOHFIY Strong Biomarker [292]
SRC TT6PKBN Strong Altered Expression [293]
SRPK2 TTCZEJ9 Strong Biomarker [294]
SSTR1 TTIND6G Strong Posttranslational Modification [295]
STAT1 TTN7R6K Strong Biomarker [296]
STC2 TT4EFTR Strong Altered Expression [297]
STK17A TTEYF03 Strong Altered Expression [298]
TAGLN2 TTP6BIJ Strong Biomarker [299]
TFAP2A TTDY4BS Strong Biomarker [300]
TGFA TTTLQFR Strong Genetic Variation [301]
TKTL1 TTNQ1J3 Strong Biomarker [302]
TNFRSF10A TT5WLRX Strong Biomarker [303]
TPX2 TT0PHL4 Strong Biomarker [219]
TRIM24 TT9Q7AE Strong Altered Expression [304]
TRPM3 TTO3TD8 Strong Biomarker [305]
TTK TTP7EGM Strong Biomarker [306]
TUSC2 TTJ8O14 Strong Biomarker [75]
TXNRD1 TTR7UJ3 Strong Altered Expression [229]
TYMS TTP1UKZ Strong Biomarker [307]
ULK1 TT4D7MJ Strong Altered Expression [308]
UTRN TTNO1VA Strong Altered Expression [309]
VEGFC TT0QUFV Strong Altered Expression [310]
WEE1 TTJFOAL Strong Biomarker [133]
WRN TT2H5WQ Strong Biomarker [311]
XPA TTGT87E Strong Biomarker [312]
XRCC5 TTCB9KW Strong Genetic Variation [313]
YAP1 TT8UN2D Strong Altered Expression [314]
ATP7B TTOPO51 Definitive Altered Expression [315]
CCNA2 TTAMQ62 Definitive Biomarker [55]
CCNB1 TT9P6OW Definitive Biomarker [55]
CCNE1 TTCEJ4F Definitive Biomarker [55]
CCNE2 TTLDRGX Definitive Biomarker [55]
FBXW7 TT29KY7 Definitive Biomarker [316]
------------------------------------------------------------------------------------
⏷ Show the Full List of 368 DTT(s)
This Disease Is Related to 3 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLCO6A1 DTIFXNS Limited Altered Expression [317]
ABCC5 DTYVM24 moderate Altered Expression [5]
SLC25A16 DTNU9EW Strong Biomarker [318]
------------------------------------------------------------------------------------
This Disease Is Related to 21 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
ADH1B DEEN9RD Limited Genetic Variation [166]
AKR1C1 DE7P2FB moderate Biomarker [319]
GLS DE3E0VT moderate Altered Expression [113]
ADH1C DEM1HNL Strong Genetic Variation [135]
AKR1A1 DED2FW3 Strong Genetic Variation [135]
ALDH1A1 DE2JP1Y Strong Biomarker [320]
CRMP1 DE0EUXB Strong Altered Expression [309]
CYP2A13 DEXZA9U Strong Genetic Variation [321]
EGLN3 DEMQTKH Strong Altered Expression [322]
EPHX1 DELB4KP Strong Genetic Variation [321]
GGCT DEKW6PB Strong Genetic Variation [323]
GSTO2 DEHMPZR Strong Genetic Variation [203]
HSD17B12 DE915QP Strong Biomarker [324]
ME1 DE97WM8 Strong Altered Expression [325]
MTRR DE6NIY9 Strong Genetic Variation [326]
NAT1 DE7OAB3 Strong Genetic Variation [327]
PER1 DE9HF0I Strong Altered Expression [328]
SAT1 DEMWO83 Strong Biomarker [329]
SULT1A1 DEYWLRK Strong Genetic Variation [330]
SULT1E1 DESTKG6 Strong Genetic Variation [237]
UPRT DE20ETR Strong Biomarker [331]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 DME(s)
This Disease Is Related to 480 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
ING1 OTEZBRKW No Known Unknown [36]
APOBEC3A OTYO6F5P Limited Biomarker [332]
ATG10 OTVRPC5X Limited Genetic Variation [9]
CAPN6 OT8K5PR5 Limited Biomarker [333]
DCC OT2C1SHW Limited Biomarker [334]
DDB2 OTO8HVVB Limited Biomarker [335]
DSC1 OTNII6GZ Limited Biomarker [336]
E2F5 OT1XWING Limited Biomarker [337]
ERCC5 OTQAKFJM Limited Genetic Variation [338]
FJX1 OT8SVTSS Limited Biomarker [339]
GNA13 OTVDL515 Limited Biomarker [340]
GSTK1 OTDNGWAF Limited Altered Expression [317]
KLF6 OTQY9S7F Limited Biomarker [341]
MAGED4B OTO37U7W Limited Altered Expression [339]
MAP3K13 OTS93BTX Limited Biomarker [342]
MED15 OT0D0JVD Limited Biomarker [343]
MTUS1 OTBPALMU Limited Biomarker [344]
MVP OTJGHJRB Limited Biomarker [345]
NBN OT73B5MD Limited Biomarker [346]
NDRG1 OTVO66BO Limited Biomarker [347]
NMU OTW9X7BQ Limited Biomarker [348]
PSD4 OTEFB87Z Limited Biomarker [340]
RPA3 OT8JAQGL Limited Altered Expression [349]
RPL14 OTZZW7TK Limited Genetic Variation [350]
S100A2 OTTGHJ1H Limited Altered Expression [351]
SERPINA5 OTTZXPGD Limited Biomarker [352]
SGSM3 OTIB1P8A Limited Genetic Variation [353]
SLPI OTUNFUU8 Limited Altered Expression [354]
TBX3 OTM64N7K Limited Altered Expression [355]
TCHP OTVDMHSY Limited Biomarker [333]
TNFRSF10B OTA1CPBV Limited Autosomal dominant [36]
TSC2 OT47LWI9 Limited Altered Expression [356]
ACTA1 OTOVGLPG moderate Biomarker [357]
ACTL6A OT0EC5BQ moderate Biomarker [282]
ACTL8 OTUDD0QT moderate Altered Expression [352]
AFF4 OTTL5Y8R moderate Biomarker [358]
AJUBA OTNW7YPK moderate Genetic Variation [359]
ALDH3A1 OTAYZZE6 moderate Altered Expression [360]
ALG3 OTPOL1QW moderate Altered Expression [361]
AP1G1 OTEO6Y9H moderate Biomarker [362]
ATG12 OTJRO09Y moderate Genetic Variation [363]
ATG16L1 OTEOYC5D moderate Genetic Variation [363]
BCL10 OT47MCLI moderate Altered Expression [364]
CCL15 OTOGZ85M moderate Altered Expression [365]
CCL18 OT7JYSK9 moderate Altered Expression [366]
CD247 OT45FGUX moderate Altered Expression [367]
CMAS OTFQJG3C moderate Biomarker [368]
COX3 OTNNGBYJ moderate Biomarker [369]
CPEB4 OTW1SCZW moderate Altered Expression [370]
CTNND1 OTUMPSHR moderate Biomarker [58]
CUL4B OT2QX4DO moderate Altered Expression [371]
CYTB OTAHB98A moderate Altered Expression [369]
DDB1 OTTR2L3Z moderate Altered Expression [372]
DDX3X OTDO4TRX moderate Biomarker [373]
DERL1 OTJUS74N moderate Altered Expression [374]
DIAPH1 OTZBYPLH moderate Altered Expression [375]
DNAJB7 OT4BOECZ moderate Biomarker [376]
DOCK5 OT63I0CL moderate Altered Expression [377]
DSPP OT1TYNDN moderate Biomarker [378]
DTX1 OTYX91DX moderate Altered Expression [379]
DUOX1 OTQ2AEW0 moderate Biomarker [380]
EIF3A OTFABY9G moderate Biomarker [373]
ELMO3 OTQHO9VM moderate Altered Expression [381]
ERCC3 OTVAW3P1 moderate Altered Expression [100]
FAM135B OTCSYBI7 moderate Biomarker [382]
FANCD2 OTVEB5LF moderate Biomarker [383]
FBXO4 OT6VYX67 moderate Biomarker [384]
FCGBP OT63T6XQ moderate Altered Expression [385]
FTL OTYQA8A6 moderate Altered Expression [74]
FXR1 OTEMQ1SR moderate Biomarker [384]
GAGE1 OT53E50E moderate Biomarker [386]
GCC1 OTDOE6U8 moderate Altered Expression [387]
GPRC5A OTPOCWR7 moderate Altered Expression [388]
GRAP OTO1P7YX moderate Biomarker [389]
GRP OT8JDFNI moderate Biomarker [31]
GTF2H1 OTCRXC6B moderate Altered Expression [390]
GTF2H2 OTK72L9I moderate Altered Expression [390]
GTF2H3 OT87W5QJ moderate Altered Expression [390]
GTF2H4 OTPD1DIU moderate Altered Expression [390]
GTF2H5 OTRL219S moderate Altered Expression [390]
HNRNPC OT47AK4C moderate Biomarker [391]
HOPX OTBSR6C9 moderate Biomarker [392]
HOXA10 OTB6GQ09 moderate Altered Expression [393]
HOXA9 OTKNK5H0 moderate Biomarker [394]
IL17B OTS86H50 moderate Biomarker [395]
IL17RA OTVVI8ER moderate Biomarker [396]
IRX1 OT0ZN9EJ moderate Biomarker [397]
JMJD6 OTILR7E4 moderate Altered Expression [398]
JMJD7-PLA2G4B OTXIGTKQ moderate Biomarker [399]
JUNB OTG2JXV5 moderate Genetic Variation [80]
JUND OTNKACJD moderate Genetic Variation [80]
KIR2DL5A OT09FZE1 moderate Biomarker [86]
KIR2DL5B OTSV0JL9 moderate Biomarker [86]
KIR2DS4 OT00N6UJ moderate Genetic Variation [86]
LAT OTZC1XZ1 moderate Altered Expression [289]
LGALS9 OT7MF91K moderate Biomarker [35]
LRG1 OTLD0KWA moderate Altered Expression [400]
LRPPRC OTXSK5LP moderate Biomarker [401]
MAGEA11 OTLT6Q3G moderate Altered Expression [386]
MAML1 OTQA4DDN moderate Altered Expression [402]
NCOR2 OTY917X0 moderate Altered Expression [258]
NEURL1 OT2C4P70 moderate Biomarker [403]
NFYA OTWFFOVH moderate Biomarker [404]
NIPBL OTF6OOLU moderate Biomarker [405]
NSUN2 OTZCNM33 moderate Genetic Variation [406]
PDHA1 OTGEU8IK moderate Biomarker [225]
PDLIM7 OTAZVODU moderate Biomarker [407]
PFN2 OT5SSSA7 moderate Altered Expression [408]
PLAAT4 OTI66SAJ moderate Altered Expression [62]
PLXNB1 OTCA7JIT moderate Biomarker [286]
POPDC3 OTN4FJ5J moderate Biomarker [409]
PTX3 OTPXHRKU moderate Biomarker [410]
PWP1 OTUKXP1E moderate Altered Expression [390]
QKI OTTAUGLB moderate Altered Expression [411]
RAB25 OTW0W6NP moderate Altered Expression [412]
RABGEF1 OTWC3Z3R moderate Biomarker [413]
RAP1A OT5RH6TI moderate Biomarker [413]
RBL2 OTBQSOE6 moderate Genetic Variation [414]
REG3G OTLIUY8Z moderate Altered Expression [415]
RFPL1 OTNQIVOJ moderate Biomarker [416]
RHPN1 OTYZ1NV8 moderate Biomarker [417]
ROBO3 OTPVG40S moderate Biomarker [62]
RPL17 OTTYMPS6 moderate Biomarker [418]
SEPTIN9 OT1VMRFQ moderate Biomarker [419]
SERPINE2 OTYF5340 moderate Genetic Variation [420]
SESN2 OT889IXY moderate Altered Expression [421]
SIGLEC1 OTNWSQA9 moderate Altered Expression [422]
SLC16A4 OT1YXBKC moderate Altered Expression [111]
SLFN11 OTJWFPMY moderate Altered Expression [67]
SLN OTERIU75 moderate Biomarker [423]
SMARCD1 OTHFFT6G moderate Altered Expression [424]
SNX5 OT6ZOWMU moderate Altered Expression [316]
SPRR2A OT62ZU6B moderate Biomarker [425]
SRI OT4R3EAC moderate Altered Expression [426]
STAMBP OTOT2OXM moderate Altered Expression [427]
STING1 OTDAP4G0 moderate Altered Expression [428]
TAT OT2CJ91O moderate Biomarker [28]
TEAD4 OTJS0T2B moderate Biomarker [429]
TENM2 OTPLUYEF moderate Biomarker [430]
TERF2IP OT3M5P3G moderate Biomarker [413]
TIMM8A OTDX9687 moderate Biomarker [431]
TLCD3B OTM6EPUS moderate Biomarker [432]
TMEM237 OTQEVL7L moderate Biomarker [387]
TRAF2 OT1MEZZN moderate Biomarker [433]
TRAF3 OT5TQBGV moderate Genetic Variation [434]
ACOT7 OT7C68YV Strong Altered Expression [435]
ACTBL2 OTD6B81U Strong Altered Expression [435]
ACTG2 OTRDWUO0 Strong Altered Expression [435]
ADAM12 OTZKOTDB Strong Biomarker [436]
AHSA1 OTC7AFHT Strong Altered Expression [93]
ALKBH3 OTS1CD9Z Strong Altered Expression [437]
ANKRD36B OT3MW415 Strong Altered Expression [438]
ANXA6 OT9KIQ0Y Strong Altered Expression [171]
APOBEC3B OTHLNI51 Strong Altered Expression [439]
ARF6 OTVV7KJO Strong Altered Expression [440]
ARHGAP1 OT0H2ZBZ Strong Altered Expression [441]
ARHGAP21 OT6XY8Y9 Strong Altered Expression [441]
ARHGAP24 OTCQCEZS Strong Genetic Variation [442]
ARHGEF28 OT3F32IU Strong Altered Expression [443]
ARID2 OTIRJXWM Strong Biomarker [305]
ARPC5 OTFNMMDL Strong Altered Expression [444]
ASAP1 OT4DLRYY Strong Altered Expression [440]
ASCC1 OTH4VAP9 Strong Biomarker [445]
ATF2 OTNIZPEA Strong Biomarker [446]
ATP2A3 OTFYDEES Strong Genetic Variation [132]
ATP5F1A OT3FZDLX Strong Altered Expression [447]
ATP5MC1 OTOLSYOI Strong Altered Expression [447]
ATP5MC2 OTA5F480 Strong Altered Expression [447]
ATP5PF OTDAE8FP Strong Altered Expression [447]
AZIN2 OT8OB7CG Strong Biomarker [448]
BCL11B OT8KKCVJ Strong Altered Expression [449]
BCL2L12 OTS6IFZY Strong Altered Expression [450]
BHLHE40 OTITX14U Strong Genetic Variation [451]
BHMT OTYB6PXZ Strong Genetic Variation [249]
BPNT1 OTPX5PSQ Strong Biomarker [239]
C1GALT1 OT2ZSZ6P Strong Altered Expression [452]
CANX OTYP1F6J Strong Biomarker [210]
CCDC54 OTW5WCX9 Strong Altered Expression [453]
CCDC8 OTO295IH Strong Biomarker [210]
CCNA1 OTX4HD45 Strong Biomarker [55]
CCNL1 OTAJSS3D Strong Genetic Variation [454]
CD151 OTF3UZS7 Strong Altered Expression [455]
CD68 OTOYEY3J Strong Biomarker [146]
CDX1 OTOHTMJE Strong Altered Expression [456]
CENPF OT7AG0SW Strong Biomarker [457]
CEP55 OTGSG2PA Strong Altered Expression [458]
CERS1 OT6EYRM3 Strong Altered Expression [459]
CERS6 OTOP4GV1 Strong Biomarker [460]
CHAC1 OTJGE772 Strong Altered Expression [461]
CHD5 OTS5EVHH Strong Biomarker [462]
CHP1 OTHTXN1A Strong Genetic Variation [463]
CIP2A OTVS2GXA Strong Biomarker [464]
CKAP4 OTDUC9ME Strong Biomarker [282]
CKMT1A OTCINHH5 Strong Altered Expression [465]
CLOCK OTNEOJY7 Strong Altered Expression [466]
CLPTM1L OTDJWQXI Strong Genetic Variation [467]
CLUH OTCDYPZV Strong Genetic Variation [468]
CMTM6 OT70T27A Strong Altered Expression [469]
COL5A1 OT24078H Strong Biomarker [239]
COMMD1 OT7WUD5R Strong Altered Expression [470]
COMMD6 OTRZQJFW Strong Biomarker [456]
COX2 OTTMVBJJ Strong Biomarker [471]
COX5B OTDP94F3 Strong Biomarker [472]
CRABP1 OTISDG5X Strong Altered Expression [165]
CRABP2 OTY01V9G Strong Posttranslational Modification [473]
CRTAP OT53H5U6 Strong Genetic Variation [141]
CSH1 OT33HTRR Strong Biomarker [474]
CSH2 OTW8JVAN Strong Biomarker [474]
CSMD1 OTIVDSC4 Strong Biomarker [475]
CST2 OTRKRW50 Strong Biomarker [476]
CST5 OTHJXNJG Strong Biomarker [476]
CST6 OTZVHJTF Strong Biomarker [476]
CSTA OT1K68KE Strong Biomarker [476]
CT55 OTQC0H27 Strong Altered Expression [234]
CTDSPL OTZJ0CZK Strong Genetic Variation [477]
CTNNA2 OTJ8G92T Strong Biomarker [478]
CTNNAL1 OTESJ6JD Strong Biomarker [443]
CTTN OTJRG4ES Strong Altered Expression [479]
CXADR OT9ZP02A Strong Altered Expression [480]
CYGB OTX153DQ Strong Posttranslational Modification [481]
CYTIP OTRJ3ZC5 Strong Genetic Variation [141]
DAPK1 OTNCNUCO Strong Altered Expression [482]
DAPK2 OTWODUQG Strong Altered Expression [309]
DCTN3 OTQOSUES Strong Genetic Variation [463]
DCUN1D1 OT8UJLZU Strong Biomarker [19]
DEFB103B OT8RWY64 Strong Altered Expression [483]
DENR OTXP9HOY Strong Altered Expression [309]
DLAT OT9LBJVN Strong Biomarker [484]
DLC1 OTP8LMCR Strong Genetic Variation [485]
DLEC1 OTMKKBUW Strong Posttranslational Modification [486]
DNAJA3 OT61924T Strong Biomarker [487]
DNAJC2 OT3JDA0R Strong Genetic Variation [488]
DNER OT2GH2E5 Strong Biomarker [489]
DPPA4 OTAEOACS Strong Biomarker [490]
DST OTHZBM4X Strong Biomarker [491]
DUSP4 OT6WAO12 Strong Biomarker [492]
DYNC1H1 OTD1KRKO Strong Genetic Variation [463]
E2F7 OTWW358N Strong Biomarker [292]
ECT2 OTQDUCT6 Strong Biomarker [493]
EFNB2 OT0DCUOM Strong Biomarker [189]
ELAVL2 OT6EJ8MQ Strong Altered Expression [99]
ELF3 OTUTLEQO Strong Biomarker [494]
ERCC4 OTFIOPG1 Strong Altered Expression [312]
ERCC6 OT2QZKSF Strong Biomarker [474]
ESM1 OT331Y8V Strong Altered Expression [495]
EXT1 OTRPALJK Strong Biomarker [493]
FADD OTV7GFHH Strong Genetic Variation [496]
FANCC OTTIDM3P Strong Biomarker [497]
FANCE OTKRPBW1 Strong Biomarker [498]
FANCL OTJC7QPQ Strong Biomarker [498]
FARP2 OTNRQIMK Strong Biomarker [499]
FBLIM1 OTFHXMON Strong Biomarker [500]
FEV OTYEC4IR Strong Biomarker [501]
FGF3 OT9PK2SI Strong Biomarker [502]
FHL5 OT6C00Z1 Strong Altered Expression [435]
FLOT2 OTZ0QR5L Strong Biomarker [503]
FSD1 OT8P6PT3 Strong Biomarker [504]
FSD1L OTBQ48RF Strong Biomarker [504]
FUT1 OTODG57A Strong Genetic Variation [505]
FZR1 OT0WGWZS Strong Altered Expression [506]
GAB1 OTQKE6V4 Strong Biomarker [507]
GADL1 OTJM4A0R Strong Biomarker [448]
GATAD2B OTJL128N Strong Altered Expression [171]
GDF1 OTZ1VRBH Strong Altered Expression [459]
GEMIN2 OT4L6TLL Strong Biomarker [506]
GNAS OTMH8BKJ Strong Genetic Variation [138]
GNB3 OTA6HYBA Strong Genetic Variation [508]
GOPC OTRBGH71 Strong Biomarker [500]
GPAA1 OTWVRR35 Strong Biomarker [509]
GPD1L OTVLWW9T Strong Altered Expression [510]
GPR4 OTIBF32I Strong Biomarker [511]
GRAP2 OTS5NIZ3 Strong Altered Expression [93]
GSTM2 OTG4WT05 Strong Genetic Variation [512]
GZMM OTEC5CWT Strong Biomarker [351]
HAVCR2 OTOL603T Strong Altered Expression [513]
HCFC1R1 OTGDPS5C Strong Biomarker [514]
HELLS OTVVV668 Strong Altered Expression [515]
HELQ OTL1STJT Strong Biomarker [516]
HNRNPK OTNPRM8U Strong Altered Expression [517]
HNRNPL OT0DJX74 Strong Biomarker [518]
HOXB9 OTMVHQOU Strong Altered Expression [519]
HOXC6 OTBCRAZV Strong Altered Expression [520]
HOXD11 OT9XGA4G Strong Biomarker [208]
HRG OTPLUFOG Strong Altered Expression [521]
HSF2 OTXNJIJ9 Strong Genetic Variation [522]
HSPB2 OTS01646 Strong Altered Expression [210]
HUWE1 OTFH6BJS Strong Altered Expression [523]
HYAL1 OT2SJN0X Strong Altered Expression [524]
IDH2 OTTQA4PB Strong Genetic Variation [138]
IFI16 OT4SPU0U Strong Biomarker [525]
IL18R1 OT83XMPQ Strong Altered Expression [178]
ING2 OT6H0EWF Strong Biomarker [526]
ING3 OTDIJXFP Strong Altered Expression [527]
ING4 OT0VVG4V Strong Biomarker [528]
INTS2 OT2N5TCK Strong Biomarker [502]
IRF6 OTKJ44EV Strong Biomarker [529]
ISYNA1 OT49ONSE Strong Altered Expression [530]
ITGA3 OTBCH21D Strong Altered Expression [531]
ITGA9 OTHN1IKA Strong Genetic Variation [477]
ITGB4 OT28UK84 Strong Altered Expression [532]
IVL OT4VPNGY Strong Biomarker [515]
KIF1A OT3JVEGV Strong Biomarker [533]
KIF22 OTY6X6BL Strong Biomarker [534]
KIR3DL1 OTPOSXFX Strong Biomarker [201]
KRT13 OTTYSKGX Strong Altered Expression [223]
KRT16 OTGA0EQN Strong Altered Expression [535]
KRT18 OTVLQFIP Strong Altered Expression [536]
KRT5 OTVGI9HT Strong Biomarker [537]
LAMA3 OTFME7HT Strong Biomarker [491]
LATS1 OTOOCG4R Strong Posttranslational Modification [538]
LDOC1 OTWZH4O9 Strong Altered Expression [539]
LGALS7 OTMSVI7R Strong Altered Expression [487]
LHX6 OT47UQZ5 Strong Biomarker [397]
LIMD1 OTN1CG6R Strong Altered Expression [540]
LMLN OTQF0JPY Strong Posttranslational Modification [247]
LOXL4 OT6XY2JL Strong Altered Expression [541]
MAGEB2 OTAGUVU5 Strong Biomarker [542]
MAGEB6 OTOTV1FU Strong Genetic Variation [234]
MAK16 OTD546E5 Strong Biomarker [543]
MAL OTBM30SW Strong Biomarker [533]
MARCHF8 OTH7PNN2 Strong Biomarker [544]
MAU2 OTALDF8Q Strong Biomarker [545]
MFAP2 OTMHVBTV Strong Altered Expression [546]
MICA OTPEIEAR Strong Altered Expression [547]
MICU1 OTS7N0LE Strong Altered Expression [548]
MLXIP OT30UNI7 Strong Biomarker [544]
MPEG1 OT7DAO0F Strong Biomarker [306]
MRPL28 OT4LUTZU Strong Posttranslational Modification [549]
MRPL41 OTG5URO4 Strong Genetic Variation [550]
MSN OTZJ4J6G Strong Biomarker [551]
MTHFD1 OTMKHVWC Strong Genetic Variation [249]
MXI1 OTUQ9E0D Strong Biomarker [552]
MYBBP1A OTIVEMIU Strong Biomarker [553]
MYCBPAP OT3W21WR Strong Altered Expression [440]
MYLIP OTL0PFGV Strong Biomarker [544]
MYO1B OTGZUJ0I Strong Biomarker [554]
NAA25 OTS3QVF1 Strong Genetic Variation [516]
NAB2 OTG4BDF3 Strong Altered Expression [180]
NANS OTMQ2FUH Strong Altered Expression [116]
NCBP2 OTQNZTE4 Strong Biomarker [493]
NCOA1 OTLIUJQD Strong Altered Expression [465]
NDN OTYBYJ82 Strong Posttranslational Modification [147]
NEIL1 OTHBU5DJ Strong Posttranslational Modification [555]
NEUROD1 OTZQ7QJ2 Strong Posttranslational Modification [556]
NINL OTWIK6HT Strong Altered Expression [557]
NLRP2 OTJA81JU Strong Biomarker [346]
NOL4 OTWI587R Strong Biomarker [397]
NOVA1 OT6A9KHY Strong Biomarker [558]
NSD2 OTQ6SW4R Strong Biomarker [254]
NSD3 OT3677ZG Strong Biomarker [559]
NSDHL OTK3EJFD Strong Biomarker [560]
NTNG1 OTF48IID Strong Biomarker [561]
NXF1 OTEFHXG6 Strong Biomarker [547]
NXT1 OT0VO6AY Strong Posttranslational Modification [549]
OBP2A OTBIJ5TI Strong Biomarker [534]
OR10A4 OTYYB8SY Strong Genetic Variation [562]
OR2AG1 OTEITRP4 Strong Biomarker [563]
OXA1L OTS0BFRD Strong Biomarker [564]
P2RX2 OT0LF34A Strong Altered Expression [264]
P2RX5 OTLBR20R Strong Altered Expression [264]
P2RX6 OT1FNTXA Strong Altered Expression [264]
PBXIP1 OTEAAUBY Strong Biomarker [514]
PCDH18 OTTLQWRN Strong Biomarker [565]
PDCD4 OTZ6NXUX Strong Altered Expression [566]
PDPN OTBUV19I Strong Altered Expression [567]
PER3 OTVKYVJA Strong Altered Expression [568]
PHB2 OTCAX3AW Strong Genetic Variation [463]
PHF2 OTJCIQR2 Strong Biomarker [569]
PITX2 OTWMXAOY Strong Posttranslational Modification [570]
PIWIL1 OT7CRGZ3 Strong Altered Expression [571]
PIWIL4 OTDA9MY0 Strong Altered Expression [571]
PLAGL1 OTZAO900 Strong Biomarker [572]
PLCE1 OTJISZOX Strong Genetic Variation [573]
PLEC OTU4XDEG Strong Biomarker [574]
PMAIP1 OTXEE550 Strong Altered Expression [575]
PMPCB OTRMBHNM Strong Genetic Variation [488]
PNO1 OT010GIS Strong Biomarker [543]
POLD1 OTWO4UCJ Strong Altered Expression [576]
POLD3 OTEQEFQ2 Strong Altered Expression [171]
POLDIP2 OT8SZSJ6 Strong Altered Expression [93]
POTEM OT7L2HGH Strong Altered Expression [435]
PPFIA1 OTYYFA9C Strong Altered Expression [361]
PPP2R1A OTYA3GB4 Strong Genetic Variation [138]
PRDM9 OTWAHLUR Strong Genetic Variation [142]
PRIMA1 OT9ITT3P Strong Biomarker [577]
PRRX1 OTTZK5G8 Strong Biomarker [93]
PTPA OTRGFOI7 Strong Biomarker [578]
PTPRK OTAP5AT3 Strong Genetic Variation [579]
PTPRT OTV5TXNN Strong Biomarker [580]
PTTG1IP OTX21QTE Strong Biomarker [581]
PUF60 OTG90DYF Strong Biomarker [499]
PXN OTVMMUOF Strong Biomarker [306]
RAB40B OTCA9ZF5 Strong Biomarker [582]
RACGAP1 OTQE8IEH Strong Altered Expression [583]
RAD17 OT1I93DT Strong Altered Expression [584]
RAD21 OTQS84ZF Strong Biomarker [278]
RAD50 OTYMU9G1 Strong Genetic Variation [585]
RAD51C OTUD6SY5 Strong Genetic Variation [586]
RAP1GAP OTC31ONQ Strong Biomarker [587]
RASSF1 OTEZIPB7 Strong Posttranslational Modification [588]
RASSF3 OT4V9SRK Strong Genetic Variation [589]
RBMS3 OTFSC9MR Strong Biomarker [543]
RBP2 OTR8QG5V Strong Biomarker [590]
RBP3 OTIWM4GT Strong Biomarker [591]
RBX1 OTYA1UIO Strong Biomarker [592]
RCHY1 OTAE7504 Strong Altered Expression [593]
RECQL OTPCH3JH Strong Biomarker [311]
REV3L OT0OP8EJ Strong Posttranslational Modification [594]
RFC1 OT3L5PK3 Strong Genetic Variation [249]
RHOBTB2 OT2DATFX Strong Altered Expression [595]
RHOC OTOLE1FT Strong Altered Expression [596]
RITA1 OTUH8IPS Strong Biomarker [597]
RNF19A OTKWCV80 Strong Altered Expression [93]
RPS27 OTFXKY7P Strong Biomarker [306]
RPS29 OTCC1872 Strong Altered Expression [598]
RRM2B OTE8GBUR Strong Genetic Variation [599]
RYR2 OT0PF19E Strong Genetic Variation [600]
S100A7 OTJFVJRF Strong Biomarker [601]
SATB2 OT2W80XC Strong Biomarker [602]
SBF1 OTW6I9RV Strong Biomarker [603]
SCAF11 OTX59D0X Strong Biomarker [506]
SCYL1 OTQ0IN7P Strong Biomarker [604]
SDCBP OTS3NCC5 Strong Biomarker [605]
SDCCAG8 OTV2ZGV9 Strong Biomarker [431]
SEC62 OTCWEL5F Strong Biomarker [606]
SEPTIN4 OTD16B30 Strong Biomarker [607]
SERPINB13 OTILBHCE Strong Altered Expression [608]
SERPINB2 OT72QLZB Strong Biomarker [609]
SERPINB4 OT88LHZ8 Strong Altered Expression [610]
SERTAD1 OTBHKZQP Strong Biomarker [274]
SET OTGYYQJO Strong Altered Expression [578]
SFN OTLJCZ1U Strong Biomarker [279]
SH3BP4 OTVIRKW7 Strong Altered Expression [611]
SH3GL2 OTOE443G Strong Biomarker [612]
SH3KBP1 OTIUA60B Strong Biomarker [613]
SHMT1 OTIINA3J Strong Genetic Variation [249]
SHMT2 OT5NCAZN Strong Genetic Variation [249]
SIRT4 OT5S0J23 Strong Biomarker [344]
SIRT7 OT5M4OT4 Strong Biomarker [614]
SMAD4 OTWQWCKG Strong Biomarker [615]
SMARCA2 OTSGJ8SV Strong Genetic Variation [616]
SMG1 OTTS3SXE Strong Altered Expression [617]
SMR3A OT6NAJJI Strong Altered Expression [618]
SMUG1 OT2YIOCQ Strong Biomarker [619]
SMURF1 OT5UIZR8 Strong Altered Expression [620]
SNAI2 OT7Y8EJ2 Strong Biomarker [621]
SOAT1 OTB4Y5RJ Strong Biomarker [622]
SPA17 OT8J7T7U Strong Altered Expression [453]
SPATA2 OTOA45GL Strong Biomarker [418]
SPTLC3 OTZDX6PT Strong Altered Expression [623]
SRRM2 OTSIMMC9 Strong Biomarker [543]
SRSF3 OTOFT707 Strong Biomarker [518]
SUB1 OTK71JYU Strong Posttranslational Modification [549]
SULF1 OTJCNCO0 Strong Biomarker [205]
SUPT20H OTTMC0LH Strong Altered Expression [623]
SUPT3H OT7B6FRO Strong Altered Expression [623]
TALDO1 OTDKV2S2 Strong Genetic Variation [624]
TBP OT6C0S52 Strong Altered Expression [598]
TCF21 OT393IMA Strong Posttranslational Modification [625]
TFAM OTXXV5V7 Strong Biomarker [626]
TFDP2 OTKQFX5H Strong Genetic Variation [627]
TFE3 OTM99ZWH Strong Biomarker [628]
THEM4 OTSIZU8Y Strong Biomarker [629]
TIMP3 OTDGQAD1 Strong Genetic Variation [630]
TMC6 OTKH50J4 Strong Biomarker [631]
TMEM45A OT54KJG6 Strong Altered Expression [632]
TMPRSS11E OTO5U2TK Strong Altered Expression [633]
TMPRSS13 OTMAOAP3 Strong Posttranslational Modification [247]
TNFAIP2 OTRZH80H Strong Genetic Variation [634]
TNFAIP8 OT1G9297 Strong Biomarker [635]
TP53I3 OTSCM68G Strong Genetic Variation [550]
TP53INP2 OT0GTBXO Strong Biomarker [509]
TP73 OT0LUO47 Strong Genetic Variation [442]
TRAF4 OTJLRVMC Strong Altered Expression [636]
TRIM33 OT0KS4J7 Strong Biomarker [637]
TRIP13 OTFM3TI9 Strong Biomarker [638]
TSPAN1 OTZQPIYK Strong Biomarker [639]
TSPAN31 OT8WQ83R Strong Altered Expression [116]
HOXD10 OT0NOWU2 Definitive Altered Expression [640]
TP63 OT0WOOKQ Definitive Biomarker [641]
------------------------------------------------------------------------------------
⏷ Show the Full List of 480 DOT(s)

References

1 Clinical pipeline report, company report or official report of CEL-SCI
2 ClinicalTrials.gov (NCT05271604) A Phase 2 Open-Label Study of Ozuriftamab Vedotin (BA3021) in PD-1/L1 Failure Patients With Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck. U.S.National Institutes of Health.
3 ClinicalTrials.gov (NCT04096638) Evaluating Safety and Efficacy of SB 11285 Alone and in Combination With Atezolizumab in Patients With Advanced Solid Tumors. U.S. National Institutes of Health.
4 Association of drug transporter expression with mortality and progression-free survival in stage IV head and neck squamous cell carcinoma.PLoS One. 2014 Oct 2;9(9):e108908. doi: 10.1371/journal.pone.0108908. eCollection 2014.
5 The Integration of a Three-Dimensional Spheroid Cell Culture Operation in a Circulating Tumor Cell (CTC) Isolation and Purification Process: A Preliminary Study of the Clinical Significance and Prognostic Role of the CTCs Isolated from the Blood Samples of Head and Neck Cancer Patients.Cancers (Basel). 2019 Jun 6;11(6):783. doi: 10.3390/cancers11060783.
6 Notch1 signaling contributes to stemness in head and neck squamous cell carcinoma.Lab Invest. 2016 May;96(5):508-16. doi: 10.1038/labinvest.2015.163. Epub 2016 Feb 29.
7 A novel splice variant of LOXL2 promotes progression of human papillomavirus-negative head and neck squamous cell carcinoma.Cancer. 2020 Feb 15;126(4):737-748. doi: 10.1002/cncr.32610. Epub 2019 Nov 13.
8 Heavy alcohol drinking downregulates ALDH2 gene expression but heavy smoking up-regulates SOD2 gene expression in head and neck squamous cell carcinoma.World J Surg Oncol. 2017 Aug 25;15(1):163. doi: 10.1186/s12957-017-1225-1.
9 Analysis of autophagy gene polymorphisms in Spanish patients with head and neck squamous cell carcinoma.Sci Rep. 2017 Jul 31;7(1):6887. doi: 10.1038/s41598-017-07270-0.
10 Genetic variants of a BH3-only pro-apoptotic gene, PUMA, and risk of HPV16-associated squamous cell carcinoma of the head and neck.Mol Carcinog. 2012 Oct;51 Suppl 1(Suppl 1):E54-64. doi: 10.1002/mc.21838. Epub 2011 Nov 15.
11 CD147 mediates transforming growth factor-1-induced epithelial-mesenchymal transition and cell invasion in squamous cell carcinoma of the tongue.Exp Ther Med. 2019 Apr;17(4):2855-2860. doi: 10.3892/etm.2019.7230. Epub 2019 Jan 31.
12 Drug repositioning in head and neck squamous cell carcinoma: An integrated pathway analysis based on connectivity map and differential gene expression.Pathol Res Pract. 2019 Jun;215(6):152378. doi: 10.1016/j.prp.2019.03.007. Epub 2019 Mar 5.
13 Head-and-neck squamous cell carcinoma risk in smokers: no association detected between phenotype and AHR, CYP1A1, CYP1A2, or CYP1B1 genotype.Hum Genomics. 2016 Nov 28;10(1):39. doi: 10.1186/s40246-016-0094-y.
14 DKK3 knockdown confers negative effects on the malignant potency of head and neck squamous cell carcinoma cells via the PI3K/Akt and MAPK signaling pathways.Int J Oncol. 2019 Mar;54(3):1021-1032. doi: 10.3892/ijo.2018.4667. Epub 2018 Dec 14.
15 Corrigendum: A dual specificity kinase, DYRK1A, as a potential therapeutic target for head and neck squamous cell carcinoma.Sci Rep. 2017 Jun 26;7:46864. doi: 10.1038/srep46864.
16 eIF4E and 4EBP1 are prognostic markers of head and neck squamous cell carcinoma recurrence after definitive surgery and adjuvant radiotherapy.PLoS One. 2019 Nov 22;14(11):e0225537. doi: 10.1371/journal.pone.0225537. eCollection 2019.
17 Inhibition of cisplatin-resistant head and neck squamous cell carcinoma by combination of Afatinib with PD0325901, a MEK inhibitor.Am J Cancer Res. 2019 Jun 1;9(6):1282-1292. eCollection 2019.
18 Hippo Pathway and YAP Signaling Alterations in Squamous Cancer of the Head and Neck.J Clin Med. 2019 Dec 3;8(12):2131. doi: 10.3390/jcm8122131.
19 Distinct effects of alcohol consumption and smoking on genetic alterations in head and neck carcinoma.PLoS One. 2013 Nov 20;8(11):e80828. doi: 10.1371/journal.pone.0080828. eCollection 2013.
20 Osteoactivin regulates head and neck squamous cell carcinoma invasion by modulating matrix metalloproteases.J Cell Physiol. 2018 Jan;233(1):409-421. doi: 10.1002/jcp.25900. Epub 2017 Apr 25.
21 GTSP1 expression in non-smoker and non-drinker patients with squamous cell carcinoma of the head and neck.PLoS One. 2017 Aug 17;12(8):e0182600. doi: 10.1371/journal.pone.0182600. eCollection 2017.
22 Interleukin-1 blockade overcomes erlotinib resistance in head and neck squamous cell carcinoma.Oncotarget. 2016 Nov 15;7(46):76087-76100. doi: 10.18632/oncotarget.12590.
23 Prognostic signature associated with radioresistance in head and neck cancer via transcriptomic and bioinformatic analyses.BMC Cancer. 2019 Jan 14;19(1):64. doi: 10.1186/s12885-018-5243-3.
24 Reactivation of super-enhancers by KLF4 in human Head and Neck Squamous Cell Carcinoma.Oncogene. 2020 Jan;39(2):262-277. doi: 10.1038/s41388-019-0990-4. Epub 2019 Sep 2.
25 Optimal targeting of BCL-family proteins in head and neck squamous cell carcinoma requires inhibition of both BCL-xL and MCL-1.Oncotarget. 2019 Jan 11;10(4):494-510. doi: 10.18632/oncotarget.26563. eCollection 2019 Jan 11.
26 Early Growth Response 1-Dependent Downregulation of Matrix Metalloproteinase 9 and Mouse Double Minute 2 Attenuates Head and Neck Squamous Cell Carcinoma Metastasis.Cell Physiol Biochem. 2018;50(5):1869-1881. doi: 10.1159/000494867. Epub 2018 Nov 5.
27 Genetic variants in p53-related genes confer susceptibility to second primary malignancy in patients with index squamous cell carcinoma of head and neck.Carcinogenesis. 2013 Jul;34(7):1551-7. doi: 10.1093/carcin/bgt096. Epub 2013 Mar 18.
28 Discretionary Transduction of MMP-Sensitized Tousled in Head and Neck Cancer.Mol Ther Oncolytics. 2019 Mar 20;14:57-65. doi: 10.1016/j.omto.2019.02.003. eCollection 2019 Sep 27.
29 Brusatol, a Nrf2 Inhibitor Targets STAT3 Signaling Cascade in Head and Neck Squamous Cell Carcinoma.Biomolecules. 2019 Sep 30;9(10):550. doi: 10.3390/biom9100550.
30 PDK1 Mediates NOTCH1-Mutated Head and Neck Squamous Carcinoma Vulnerability to Therapeutic PI3K/mTOR Inhibition.Clin Cancer Res. 2019 Jun 1;25(11):3329-3340. doi: 10.1158/1078-0432.CCR-18-3276. Epub 2019 Feb 15.
31 Analysis of oncogenic activities of protein kinase D1 in head and neck squamous cell carcinoma.BMC Cancer. 2018 Nov 12;18(1):1107. doi: 10.1186/s12885-018-4965-6.
32 Proteomic Profiling Identifies PTK2/FAK as a Driver of Radioresistance in HPV-negative Head and Neck Cancer.Clin Cancer Res. 2016 Sep 15;22(18):4643-50. doi: 10.1158/1078-0432.CCR-15-2785. Epub 2016 Apr 1.
33 Delayed DNA double-strand break repair following platin-based chemotherapy predicts treatment response in head and neck squamous cell carcinoma.Br J Cancer. 2016 Sep 27;115(7):825-30. doi: 10.1038/bjc.2016.266. Epub 2016 Sep 1.
34 RRM2 regulates Bcl-2 in head and neck and lung cancers: a potential target for cancer therapy.Clin Cancer Res. 2013 Jul 1;19(13):3416-28. doi: 10.1158/1078-0432.CCR-13-0073. Epub 2013 May 29.
35 Blockade of TIM3 relieves immunosuppression through reducing regulatory T cells in head and neck cancer.J Exp Clin Cancer Res. 2018 Mar 5;37(1):44. doi: 10.1186/s13046-018-0713-7.
36 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
37 Analysis of death receptor 5 and caspase-8 expression in primary and metastatic head and neck squamous cell carcinoma and their prognostic impact.PLoS One. 2010 Aug 16;5(8):e12178. doi: 10.1371/journal.pone.0012178.
38 Quantitative Imaging of the Hypoxia-Related Marker CAIX in Head and Neck Squamous Cell Carcinoma Xenograft Models.Mol Pharm. 2019 Feb 4;16(2):701-708. doi: 10.1021/acs.molpharmaceut.8b00950. Epub 2018 Dec 31.
39 The role of acetyl-coA carboxylase2 in head and neck squamous cell carcinoma.PeerJ. 2019 Jun 11;7:e7037. doi: 10.7717/peerj.7037. eCollection 2019.
40 Detailed analysis of adenosine A2a receptor (ADORA2A) and CD73 (5'-nucleotidase, ecto, NT5E) methylation and gene expression in head and neck squamous cell carcinoma patients.Oncoimmunology. 2018 Apr 18;7(8):e1452579. doi: 10.1080/2162402X.2018.1452579. eCollection 2018.
41 Adenosine receptor 2B activity promotes autonomous growth, migration as well as vascularization of head and neck squamous cell carcinoma cells.Int J Cancer. 2020 Jul 1;147(1):202-217. doi: 10.1002/ijc.32835. Epub 2020 Jan 9.
42 AGR2 promotes the proliferation, migration and regulates epithelial-mesenchymal transition in salivary adenoid cystic carcinoma.Am J Transl Res. 2017 Feb 15;9(2):507-519. eCollection 2017.
43 Epidermal growth factor-induced ANGPTL4 enhances anoikis resistance and tumour metastasis in head and neck squamous cell carcinoma.Oncogene. 2017 Apr 20;36(16):2228-2242. doi: 10.1038/onc.2016.371. Epub 2016 Oct 31.
44 Histone deacetylase inhibitors suppress aggressiveness of head and neck squamous cell carcinoma via histone acetylation-independent blockade of the EGFR-Arf1 axis.J Exp Clin Cancer Res. 2019 Feb 18;38(1):84. doi: 10.1186/s13046-019-1080-8.
45 p53-independent Noxa induction by cisplatin is regulated by ATF3/ATF4 in head and neck squamous cell carcinoma cells.Mol Oncol. 2018 Jun;12(6):788-798. doi: 10.1002/1878-0261.12172. Epub 2018 Apr 17.
46 LCL161, a SMAC-mimetic, Preferentially Radiosensitizes Human Papillomavirus-negative Head and Neck Squamous Cell Carcinoma.Mol Cancer Ther. 2019 Jun;18(6):1025-1035. doi: 10.1158/1535-7163.MCT-18-1157. Epub 2019 Apr 23.
47 Loss of heterozygosity in FANCG, FANCF and BRIP1 from head and neck squamous cell carcinoma of the oral cavity.Int J Oncol. 2017 Jun;50(6):2207-2220. doi: 10.3892/ijo.2017.3974. Epub 2017 Apr 24.
48 pDC depletion induced by CD317 blockade drives the antitumor immune response in head and neck squamous cell carcinoma.Oral Oncol. 2019 Sep;96:131-139. doi: 10.1016/j.oraloncology.2019.07.019. Epub 2019 Jul 26.
49 Expression and mutational analysis of c-CBL and its relationship to the MET receptor in head and neck squamous cell carcinoma.Oncotarget. 2017 Mar 21;8(12):18726-18734. doi: 10.18632/oncotarget.9640.
50 Carbonyl reductase 1 is a new target to improve the effect of radiotherapy on head and neck squamous cell carcinoma.J Exp Clin Cancer Res. 2018 Oct 30;37(1):264. doi: 10.1186/s13046-018-0942-9.
51 CD200 Induces Epithelial-to-Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma via -Catenin-Mediated Nuclear Translocation.Cancers (Basel). 2019 Oct 17;11(10):1583. doi: 10.3390/cancers11101583.
52 Selective blockade of B7-H3 enhances antitumour immune activity by reducing immature myeloid cells in head and neck squamous cell carcinoma.J Cell Mol Med. 2017 Sep;21(9):2199-2210. doi: 10.1111/jcmm.13143. Epub 2017 Apr 11.
53 Inhibition of SRC family kinases reduces myeloid-derived suppressor cells in head and neck cancer.Int J Cancer. 2017 Mar 1;140(5):1173-1185. doi: 10.1002/ijc.30493. Epub 2016 Dec 2.
54 CD70 as a target for chimeric antigen receptor T cells in head and neck squamous cell carcinoma.Oral Oncol. 2018 Mar;78:145-150. doi: 10.1016/j.oraloncology.2018.01.024. Epub 2018 Feb 20.
55 Upregulation of cell cycle genes in head and neck cancer patients may be antagonized by erufosine's down regulation of cell cycle processes in OSCC cells. Oncotarget. 2017 Dec 20;9(5):5797-5810.
56 Combinational therapeutic targeting of BRD4 and CDK7 synergistically induces anticancer effects in head and neck squamous cell carcinoma.Cancer Lett. 2020 Jan 28;469:510-523. doi: 10.1016/j.canlet.2019.11.027. Epub 2019 Nov 22.
57 Screening and clinical significance of tumor markers in head and neck squamous cell carcinoma through bioinformatics analysis.Mol Med Rep. 2019 Jan;19(1):143-154. doi: 10.3892/mmr.2018.9639. Epub 2018 Nov 9.
58 Can gene editing and silencing technologies play a role in the treatment of head and neck cancer?.Oral Oncol. 2017 May;68:9-19. doi: 10.1016/j.oraloncology.2017.02.016. Epub 2017 Mar 10.
59 The Molecular Landscape of Recurrent and Metastatic Head and Neck Cancers: Insights From a Precision Oncology Sequencing Platform.JAMA Oncol. 2017 Feb 1;3(2):244-255. doi: 10.1001/jamaoncol.2016.1790.
60 Gene-expression signature regulated by the KEAP1-NRF2-CUL3 axis is associated with a poor prognosis in head and neck squamous cell cancer.BMC Cancer. 2018 Jan 6;18(1):46. doi: 10.1186/s12885-017-3907-z.
61 Evaluation of the cancer stem cell marker DCLK1 in patients with lymph node metastases of head and neck cancer.Pathol Res Pract. 2019 Dec;215(12):152698. doi: 10.1016/j.prp.2019.152698. Epub 2019 Oct 23.
62 Interferon-alpha enhances the antitumour activity of EGFR-targeted therapies by upregulating RIG-I in head and neck squamous cell carcinoma.Br J Cancer. 2018 Feb 20;118(4):509-521. doi: 10.1038/bjc.2017.442. Epub 2018 Jan 18.
63 Apoptosis-sensitizing activity of birinapant in head and neck squamous cell carcinoma cell lines.Oncol Lett. 2018 Mar;15(3):4010-4016. doi: 10.3892/ol.2018.7783. Epub 2018 Jan 12.
64 The Neddylation Inhibitor Pevonedistat (MLN4924) Suppresses and Radiosensitizes Head and Neck Squamous Carcinoma Cells and Tumors.Mol Cancer Ther. 2018 Feb;17(2):368-380. doi: 10.1158/1535-7163.MCT-17-0083. Epub 2017 Aug 24.
65 ECE-1 overexpression in head and neck cancer is associated with poor tumor differentiation and patient outcome.Oral Dis. 2019 Jan;25(1):44-53. doi: 10.1111/odi.12935. Epub 2018 Oct 21.
66 Ectonucleotidase CD39 expression in regional metastases in head and neck cancer.Acta Otolaryngol. 2018 Apr;138(4):428-432. doi: 10.1080/00016489.2017.1405278. Epub 2017 Nov 26.
67 Radiosensitization of head and neck squamous cell carcinoma lines by DNA-PK inhibitors is more effective than PARP-1 inhibition and is enhanced by SLFN11 and hypoxia.Int J Radiat Biol. 2019 Dec;95(12):1597-1612. doi: 10.1080/09553002.2019.1664787. Epub 2019 Sep 17.
68 NET-producing CD16(high) CD62L(dim) neutrophils migrate to tumor sites and predict improved survival in patients with HNSCC.Int J Cancer. 2017 Jun 1;140(11):2557-2567. doi: 10.1002/ijc.30671. Epub 2017 Mar 11.
69 Prognostic role of epiregulin/amphiregulin expression in recurrent/metastatic head and neck cancer treated with cetuximab.Head Neck. 2018 Nov;40(11):2424-2431. doi: 10.1002/hed.25353. Epub 2018 Oct 10.
70 Genomic amplification of Fanconi anemia complementation group A (FancA) in head and neck squamous cell carcinoma (HNSCC): Cellular mechanisms of radioresistance and clinical relevance.Cancer Lett. 2017 Feb 1;386:87-99. doi: 10.1016/j.canlet.2016.11.014. Epub 2016 Nov 17.
71 FGF19 amplification reveals an oncogenic dependency upon autocrine FGF19/FGFR4 signaling in head and neck squamous cell carcinoma.Oncogene. 2019 Mar;38(13):2394-2404. doi: 10.1038/s41388-018-0591-7. Epub 2018 Dec 5.
72 VEGF-C/Flt-4 axis in tumor cells contributes to the progression of oral squamous cell carcinoma via upregulating VEGF-C itself and contactin-1 in an autocrine manner.Am J Cancer Res. 2018 Oct 1;8(10):2046-2063. eCollection 2018.
73 Folic acid-decorated polyamidoamine dendrimer exhibits high tumor uptake and sustained highly localized retention in solid tumors: Its utility for local siRNA delivery.Acta Biomater. 2017 Jul 15;57:251-261. doi: 10.1016/j.actbio.2017.04.023. Epub 2017 Apr 22.
74 Ferritin: A potential serum marker for lymph node metastasis in head and neck squamous cell carcinoma.Oncol Lett. 2019 Jan;17(1):314-322. doi: 10.3892/ol.2018.9642. Epub 2018 Oct 30.
75 Identification of guanine nucleotide-binding protein -7 as an epigenetically silenced gene in head and neck cancer by gene expression profiling.Int J Oncol. 2013 Apr;42(4):1427-36. doi: 10.3892/ijo.2013.1808. Epub 2013 Feb 6.
76 Suitability of GnRH Receptors for Targeted Photodynamic Therapy in Head and Neck Cancers.Int J Mol Sci. 2019 Oct 11;20(20):5027. doi: 10.3390/ijms20205027.
77 G-protein-coupled receptor kinase 2 safeguards epithelial phenotype in head and neck squamous cell carcinomas.Int J Cancer. 2020 Jul 1;147(1):218-229. doi: 10.1002/ijc.32838. Epub 2020 Jan 7.
78 Inhibitor of DNA binding 2 is a novel therapeutic target for stemness of head and neck squamous cell carcinoma.Br J Cancer. 2017 Dec 5;117(12):1810-1818. doi: 10.1038/bjc.2017.373. Epub 2017 Nov 2.
79 Interferon-alpha promotes immunosuppression through IFNAR1/STAT1 signalling in head and neck squamous cell carcinoma.Br J Cancer. 2019 Feb;120(3):317-330. doi: 10.1038/s41416-018-0352-y. Epub 2018 Dec 17.
80 Association between a functional polymorphism (-1195T>C) in the IGFBP5 promoter and head and neck cancer risk.Head Neck. 2011 May;33(5):650-60. doi: 10.1002/hed.21514. Epub 2010 Oct 14.
81 Targeting of interleukin-13 receptor 2 for treatment of head and neck squamous cell carcinoma induced by conditional deletion of TGF- and PTEN signaling.J Transl Med. 2013 Feb 19;11:45. doi: 10.1186/1479-5876-11-45.
82 Bifidobacterium breve as a delivery vector of IL-24 gene therapy for head and neck squamous cell carcinoma in vivo.Gene Ther. 2017 Nov;24(11):699-705. doi: 10.1038/gt.2017.74. Epub 2017 Aug 14.
83 Integrin 11 is overexpressed by tumour stroma of head and neck squamous cell carcinoma and correlates positively with alpha smooth muscle actin expression.J Oral Pathol Med. 2017 Apr;46(4):267-275. doi: 10.1111/jop.12493. Epub 2016 Oct 4.
84 Long noncoding RNA MYOSLID promotes invasion and metastasis by modulating the partial epithelial-mesenchymal transition program in head and neck squamous cell carcinoma.J Exp Clin Cancer Res. 2019 Jun 25;38(1):278. doi: 10.1186/s13046-019-1254-4.
85 KDM5B overexpression predicts a poor prognosis in patients with squamous cell carcinoma of the head and neck.J Cancer. 2018 Jan 1;9(1):198-204. doi: 10.7150/jca.22145. eCollection 2018.
86 KIR2DS4, KIR2DL2, and KIR2DS4del are linked with basaloid tumors, lymph node metastasis, advanced stage and metastatic risk in head and neck squamous cell carcinoma.Exp Mol Pathol. 2020 Feb;112:104345. doi: 10.1016/j.yexmp.2019.104345. Epub 2019 Nov 18.
87 Natural Killer Group 2D Ligand Depletion Reconstitutes Natural Killer Cell Immunosurveillance of Head and Neck Squamous Cell Carcinoma.Front Immunol. 2017 Apr 10;8:387. doi: 10.3389/fimmu.2017.00387. eCollection 2017.
88 LAMB3 is associated with disease progression and cisplatin cytotoxic sensitivity in head and neck squamous cell carcinoma.Eur J Surg Oncol. 2019 Mar;45(3):359-365. doi: 10.1016/j.ejso.2018.10.543. Epub 2018 Nov 2.
89 Overexpression of LAPTM4B-35 is a negative prognostic factor in head and neck squamous cell carcinoma.Sci Rep. 2019 Dec 11;9(1):18866. doi: 10.1038/s41598-019-55319-z.
90 LASP1 promotes proliferation, metastasis, invasion in head and neck squamous cell carcinoma and through direct interaction with HSPA1A.J Cell Mol Med. 2020 Jan;24(2):1626-1639. doi: 10.1111/jcmm.14854. Epub 2019 Dec 2.
91 Lymphotoxin- promotes tumor angiogenesis in HNSCC by modulating glycolysis in a PFKFB3-dependent manner.Int J Cancer. 2019 Sep 1;145(5):1358-1370. doi: 10.1002/ijc.32221. Epub 2019 Mar 6.
92 Lactoferricin B reverses cisplatin resistance in head and neck squamous cell carcinoma cells through targeting PD-L1.Cancer Med. 2018 Jul;7(7):3178-3187. doi: 10.1002/cam4.1529. Epub 2018 May 15.
93 PRRX1 Regulates Cellular Phenotype Plasticity and Dormancy of Head and Neck Squamous Cell Carcinoma Through miR-642b-3p.Neoplasia. 2019 Feb;21(2):216-229. doi: 10.1016/j.neo.2018.12.001. Epub 2019 Jan 7.
94 MAPKAPK2 plays a crucial role in the progression of head and neck squamous cell carcinoma by regulating transcript stability.J Exp Clin Cancer Res. 2019 Apr 25;38(1):175. doi: 10.1186/s13046-019-1167-2.
95 High expression of MLANA in the plasma of patients with head and neck squamous cell carcinoma as a predictor of tumor progression.Head Neck. 2019 May;41(5):1199-1205. doi: 10.1002/hed.25510. Epub 2019 Feb 25.
96 CD44(+) tumor cells promote early angiogenesis in head and neck squamous cell carcinoma.Cancer Lett. 2019 Dec 28;467:85-95. doi: 10.1016/j.canlet.2019.10.010. Epub 2019 Oct 5.
97 Non-muscle myosin II as a predictive factor in head and neck squamous cell carcinoma.Med Oral Patol Oral Cir Bucal. 2019 May 1;24(3):e346-e353. doi: 10.4317/medoral.22898.
98 The Nedd8-activating enzyme inhibitor MLN4924 (TAK-924/Pevonedistat) induces apoptosis via c-Myc-Noxa axis in head and neck squamous cell carcinoma.Cell Prolif. 2019 Mar;52(2):e12536. doi: 10.1111/cpr.12536. Epub 2018 Oct 19.
99 Integrative Bioinformatics Analysis Identifies NEK2 as a Potential Biomarker in Head and Neck Squamous Cell Carcinoma.J Comput Biol. 2020 Jan;27(1):100-108. doi: 10.1089/cmb.2019.0208. Epub 2019 Aug 28.
100 Associations between expression levels of nucleotide excision repair proteins in lymphoblastoid cells and risk of squamous cell carcinoma of the head and neck.Mol Carcinog. 2018 Jun;57(6):784-793. doi: 10.1002/mc.22801. Epub 2018 Mar 25.
101 NSD1 inactivation defines an immune cold, DNA hypomethylated subtype in squamous cell carcinoma.Sci Rep. 2017 Dec 6;7(1):17064. doi: 10.1038/s41598-017-17298-x.
102 Nerve Growth Factor (NGF)-Receptor Survival Axis in Head and Neck Squamous Cell Carcinoma.Int J Mol Sci. 2018 Jun 14;19(6):1771. doi: 10.3390/ijms19061771.
103 Altered DNA methylation is associated with aberrant stemness gene expression in earlystage HNSCC.Int J Oncol. 2019 Oct;55(4):915-924. doi: 10.3892/ijo.2019.4857. Epub 2019 Aug 14.
104 Intratumoral generation of 2-fluoroadenine to treat solid malignancies of the head and neck.Head Neck. 2019 Jun;41(6):1979-1983. doi: 10.1002/hed.25627. Epub 2019 Jan 11.
105 Integrative genomic analysis identifies ancestry-related expression quantitative trait loci on DNA polymerase and supports the association of genetic ancestry with survival disparities in head and neck squamous cell carcinoma.Cancer. 2017 Mar 1;123(5):849-860. doi: 10.1002/cncr.30457. Epub 2016 Dec 1.
106 Periostin secreted by cancer-associated fibroblasts promotes cancer stemness in head and neck cancer by activating protein tyrosine kinase 7.Cell Death Dis. 2018 Oct 22;9(11):1082. doi: 10.1038/s41419-018-1116-6.
107 Bioinformatics-based discovery of PYGM and TNNC2 as potential biomarkers of head and neck squamous cell carcinoma.Biosci Rep. 2019 Jul 29;39(7):BSR20191612. doi: 10.1042/BSR20191612. Print 2019 Jul 31.
108 Rh type C-glycoprotein functions as a novel tumor suppressor gene by inhibiting tumorigenicity and metastasis in head and neck squamous cell carcinoma.Aging (Albany NY). 2019 Jun 6;11(11):3601-3623. doi: 10.18632/aging.102000.
109 Disruption of the RICTOR/mTORC2 complex enhances the response of head and neck squamous cell carcinoma cells to PI3K inhibition.Mol Oncol. 2019 Oct;13(10):2160-2177. doi: 10.1002/1878-0261.12558. Epub 2019 Aug 28.
110 Innate immune signaling through differential RIPK1 expression promote tumor progression in head and neck squamous cell carcinoma.Carcinogenesis. 2016 May;37(5):522-9. doi: 10.1093/carcin/bgw032. Epub 2016 Mar 18.
111 Monocarboxylate Transporter 4 (MCT4) Knockout Mice Have Attenuated 4NQO Induced Carcinogenesis; A Role for MCT4 in Driving Oral Squamous Cell Cancer.Front Oncol. 2018 Aug 28;8:324. doi: 10.3389/fonc.2018.00324. eCollection 2018.
112 Glucose transporter 4 promotes head and neck squamous cell carcinoma metastasis through the TRIM24-DDX58 axis.J Hematol Oncol. 2017 Jan 7;10(1):11. doi: 10.1186/s13045-016-0372-0.
113 ASCT2 (SLC1A5)-dependent glutamine uptake is involved in the progression of head and neck squamous cell carcinoma.Br J Cancer. 2020 Jan;122(1):82-93. doi: 10.1038/s41416-019-0637-9. Epub 2019 Dec 10.
114 Predictors of cisplatin-induced ototoxicity and survival in chemoradiation treated head and neck cancer patients.Oral Oncol. 2019 Feb;89:72-78. doi: 10.1016/j.oraloncology.2018.12.010. Epub 2018 Dec 21.
115 Glutaminolysis-related genes determine sensitivity to xCT-targeted therapy in head and neck squamous cell carcinoma.Cancer Sci. 2019 Nov;110(11):3453-3463. doi: 10.1111/cas.14182. Epub 2019 Sep 13.
116 Elevated Na(+)/H(+) exchanger-1 expression enhances the metastatic collective migration of head and neck squamous cell carcinoma cells.Biochem Biophys Res Commun. 2017 Apr 22;486(1):101-107. doi: 10.1016/j.bbrc.2017.03.007. Epub 2017 Mar 6.
117 Transporter gene expression in human head and neck squamous cell carcinoma and associated epigenetic regulatory mechanisms. Am J Pathol. 2013 Jan;182(1):234-43. doi: 10.1016/j.ajpath.2012.09.008. Epub 2012 Nov 6.
118 Antitumor miR-150-5p and miR-150-3p inhibit cancer cell aggressiveness by targeting SPOCK1 in head and neck squamous cell carcinoma.Auris Nasus Larynx. 2018 Aug;45(4):854-865. doi: 10.1016/j.anl.2017.11.019. Epub 2017 Dec 9.
119 STOML2 as a novel prognostic biomarker modulates cell proliferation, motility and chemo-sensitivity via IL6-Stat3 pathway in head and neck squamous cell carcinoma.Am J Transl Res. 2019 Feb 15;11(2):683-695. eCollection 2019.
120 Anti-Trop2 blockade enhances the therapeutic efficacy of ErbB3 inhibition in head and neck squamous cell carcinoma.Cell Death Dis. 2018 Jan 5;9(1):5. doi: 10.1038/s41419-017-0029-0.
121 Circulating extracellular vesicle-associated TGF3 modulates response to cytotoxic therapy in head and neck squamous cell carcinoma.Carcinogenesis. 2019 Dec 31;40(12):1452-1461. doi: 10.1093/carcin/bgz148.
122 Blockade of TIGIT/CD155 Signaling Reverses T-cell Exhaustion and Enhances Antitumor Capability in Head and Neck Squamous Cell Carcinoma.Cancer Immunol Res. 2019 Oct;7(10):1700-1713. doi: 10.1158/2326-6066.CIR-18-0725. Epub 2019 Aug 6.
123 Phase Ib Study of Immune Biomarker Modulation with Neoadjuvant Cetuximab and TLR8 Stimulation in Head and Neck Cancer to Overcome Suppressive Myeloid Signals.Clin Cancer Res. 2018 Jan 1;24(1):62-72. doi: 10.1158/1078-0432.CCR-17-0357. Epub 2017 Oct 23.
124 Global Proteomics-based Identification and Validation of Thymosin Beta-4 X-Linked as a Prognostic Marker for Head and Neck Squamous Cell Carcinoma.Sci Rep. 2017 Aug 22;7(1):9031. doi: 10.1038/s41598-017-09539-w.
125 Association of OX40 gene polymorphisms (rs17568G/A and rs229811A/C) with head and neck squamous cell carcinoma.Mol Biol Rep. 2019 Jun;46(3):2609-2616. doi: 10.1007/s11033-019-04602-3. Epub 2019 Mar 28.
126 TRIP12 as a mediator of human papillomavirus/p16-related radiation enhancement effects.Oncogene. 2017 Feb 9;36(6):820-828. doi: 10.1038/onc.2016.250. Epub 2016 Jul 18.
127 Np63-mediated regulation of hyaluronic acid metabolism and signaling supports HNSCC tumorigenesis.Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):13254-13259. doi: 10.1073/pnas.1711777114. Epub 2017 Nov 21.
128 A single nucleotide polymorphism in the alcohol dehydrogenase 7 gene (alanine to glycine substitution at amino acid 92) is associated with the risk of squamous cell carcinoma of the head and neck.Cancer. 2010 Jun 15;116(12):2984-92. doi: 10.1002/cncr.25058.
129 Recent advances in TMEM16A: Structure, function, and disease.J Cell Physiol. 2019 Jun;234(6):7856-7873. doi: 10.1002/jcp.27865. Epub 2018 Dec 4.
130 A preliminary investigation of circulating extracellular vesicles and biomarker discovery associated with treatment response in head and neck squamous cell carcinoma.BMC Cancer. 2019 Apr 23;19(1):373. doi: 10.1186/s12885-019-5565-9.
131 Modulation of L-Arginine-Arginase Metabolic Pathway Enzymes: Immunocytochemistry and mRNA Expression in Peripheral Blood and Tissue Levels in Head and Neck Squamous Cell Carcinomas in North East India.Asian Pac J Cancer Prev. 2015;16(16):7031-8. doi: 10.7314/apjcp.2015.16.16.7031.
132 ATP2A3 gene is involved in cancer susceptibility.Cancer Genet Cytogenet. 2009 Jan 15;188(2):88-94. doi: 10.1016/j.cancergencyto.2008.10.007.
133 Combined Aurora Kinase A (AURKA) and WEE1 Inhibition Demonstrates Synergistic Antitumor Effect in Squamous Cell Carcinoma of the Head and Neck.Clin Cancer Res. 2019 Jun 1;25(11):3430-3442. doi: 10.1158/1078-0432.CCR-18-0440. Epub 2019 Feb 12.
134 Overcoming cetuximab resistance in HNSCC: the role of AURKB and DUSP proteins.Cancer Lett. 2014 Nov 28;354(2):365-77. doi: 10.1016/j.canlet.2014.08.039. Epub 2014 Sep 2.
135 Association between ADH1B and ADH1C polymorphisms and the risk of head and neck squamous cell carcinoma.Tumour Biol. 2015 Jun;36(6):4387-96. doi: 10.1007/s13277-015-3078-y. Epub 2015 Jan 21.
136 MERTK Mediates Intrinsic and Adaptive Resistance to AXL-targeting Agents.Mol Cancer Ther. 2018 Nov;17(11):2297-2308. doi: 10.1158/1535-7163.MCT-17-1239. Epub 2018 Aug 9.
137 Elemental Zn and its Binding Protein Zinc-2-Glycoprotein are Elevated in HPV-Positive Oropharyngeal Squamous Cell Carcinoma.Sci Rep. 2019 Nov 18;9(1):16965. doi: 10.1038/s41598-019-53268-1.
138 Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity.Nat Biotechnol. 2016 Feb;34(2):155-63. doi: 10.1038/nbt.3391. Epub 2015 Nov 30.
139 Mutation analysis of hBUB1 in aneuploid HNSCC and lung cancer cell lines.Cancer Lett. 1999 May 24;139(2):183-7. doi: 10.1016/s0304-3835(99)00035-x.
140 ERCC1 C8092A polymorphism predicts fair survival outcome in Japanese patients with pharyngo-laryngeal squamous cell carcinoma.Eur Arch Otorhinolaryngol. 2020 Feb;277(2):601-610. doi: 10.1007/s00405-019-05731-y. Epub 2019 Nov 20.
141 A functional variant at the miR-885-5p binding site of CASP3 confers risk of both index and second primary malignancies in patients with head and neck cancer.FASEB J. 2013 Apr;27(4):1404-12. doi: 10.1096/fj.12-223420. Epub 2012 Dec 27.
142 The non-coding landscape of head and neck squamous cell carcinoma.Oncotarget. 2016 Aug 9;7(32):51211-51222. doi: 10.18632/oncotarget.9979.
143 Antisense cyclin D1 enhances sensitivity of head and neck cancer cells to cisplatin.Laryngoscope. 2001 Jun;111(6):982-8. doi: 10.1097/00005537-200106000-00010.
144 Aberrant Myosin 1b Expression Promotes Cell Migration and Lymph Node Metastasis of HNSCC.Mol Cancer Res. 2015 Apr;13(4):721-31. doi: 10.1158/1541-7786.MCR-14-0410. Epub 2014 Nov 24.
145 Hsa-let-7e-5p Inhibits the Proliferation and Metastasis of Head and Neck Squamous Cell Carcinoma Cells by Targeting Chemokine Receptor 7.J Cancer. 2019 Apr 25;10(8):1941-1948. doi: 10.7150/jca.29536. eCollection 2019.
146 Prognostic significance of CD68(+) and CD163(+) tumor associated macrophages in head and neck squamous cell carcinoma: A systematic review and meta-analysis.Oral Oncol. 2019 Jun;93:66-75. doi: 10.1016/j.oraloncology.2019.04.019. Epub 2019 Apr 28.
147 NDN and CD1A are novel prognostic methylation markers in patients with head and neck squamous carcinomas.BMC Cancer. 2015 Oct 30;15:825. doi: 10.1186/s12885-015-1806-8.
148 Impact of PD-L1 expression and human papillomavirus status in anti-PD1/PDL1 immunotherapy for head and neck squamous cell carcinoma-Systematic review and meta-analysis.Head Neck. 2020 Apr;42(4):774-786. doi: 10.1002/hed.26036. Epub 2019 Nov 24.
149 Retargeting improves the efficacy of a telomerase-dependent oncolytic adenovirus for head and neck cancer.Oncol Rep. 2009 Jan;21(1):165-71.
150 Anti-CD47 treatment enhances anti-tumor T-cell immunity and improves immunosuppressive environment in head and neck squamous cell carcinoma.Oncoimmunology. 2018 Mar 13;7(4):e1397248. doi: 10.1080/2162402X.2017.1397248. eCollection 2018.
151 Role of polymorphic Fc gamma receptor IIIa and EGFR expression level in cetuximab mediated, NK cell dependent in vitro cytotoxicity of head and neck squamous cell carcinoma cells.Cancer Immunol Immunother. 2009 Nov;58(11):1853-64. doi: 10.1007/s00262-009-0697-4. Epub 2009 Mar 25.
152 Motility-related protein-1/CD9 expression in head and neck squamous cell carcinoma.Head Neck. 2003 Oct;25(10):848-57. doi: 10.1002/hed.10306.
153 Preferential allelic deletion of RBSP3, LIMD1 and CDC25A in head and neck squamous cell carcinoma: Implication in cancer screening and early detection.Cancer Biol Ther. 2018 Jul 3;19(7):631-635. doi: 10.1080/15384047.2018.1449615. Epub 2018 Apr 13.
154 CDH11 inhibits proliferation and invasion in head and neck cancer.J Oral Pathol Med. 2017 Feb;46(2):89-97. doi: 10.1111/jop.12471. Epub 2016 Jul 10.
155 CDK4/6 Inhibitor LEE011 Is a Potential Radiation-sensitizer in Head and Neck Squamous Cell Carcinoma: An In Vitro Study.Anticancer Res. 2019 Feb;39(2):713-720. doi: 10.21873/anticanres.13167.
156 Focal overexpression of CEACAM6 contributes to enhanced tumourigenesis in head and neck cancer via suppression of apoptosis.Mol Cancer. 2012 Sep 28;11:74. doi: 10.1186/1476-4598-11-74.
157 Promoter methylation of cyclin A1 is associated with human papillomavirus 16 induced head and neck squamous cell carcinoma independently of p53 mutation.Mol Carcinog. 2011 Sep;50(9):680-8. doi: 10.1002/mc.20798. Epub 2011 May 11.
158 Identification and analysis of genes associated with head and neck squamous cell carcinoma by integrated bioinformatics methods.Mol Genet Genomic Med. 2019 Aug;7(8):e857. doi: 10.1002/mgg3.857. Epub 2019 Jul 15.
159 Functional and genomic analyses reveal therapeutic potential of targeting -catenin/CBP activity in head and neck cancer.Genome Med. 2018 Jul 20;10(1):54. doi: 10.1186/s13073-018-0569-7.
160 CK2 modulation of NF-kappaB, TP53, and the malignant phenotype in head and neck cancer by anti-CK2 oligonucleotides in vitro or in vivo via sub-50-nm nanocapsules.Clin Cancer Res. 2010 Apr 15;16(8):2295-307. doi: 10.1158/1078-0432.CCR-09-3200. Epub 2010 Apr 6.
161 Reduced promoter methylation and increased expression of CSPG4 negatively influences survival of HNSCC patients.Int J Cancer. 2014 Dec 1;135(11):2727-34. doi: 10.1002/ijc.28906. Epub 2014 Apr 26.
162 Coordinated activation of candidate proto-oncogenes and cancer testes antigens via promoter demethylation in head and neck cancer and lung cancer.PLoS One. 2009;4(3):e4961. doi: 10.1371/journal.pone.0004961. Epub 2009 Mar 23.
163 The effects of checkpoint inhibition on head and neck squamous cell carcinoma: A systematic review.Oral Oncol. 2019 Mar;90:67-73. doi: 10.1016/j.oraloncology.2019.01.018. Epub 2019 Feb 5.
164 Association of cytochrome P450 1B1 haplotypes with head and neck cancer risk.Environ Mol Mutagen. 2017 Jul;58(6):443-450. doi: 10.1002/em.22098. Epub 2017 May 28.
165 The effect of cellular retinoic acid binding protein-I expression on the CYP26-mediated catabolism of all-trans retinoic acid and cell proliferation in head and neck squamous cell carcinoma.Metabolism. 2004 Aug;53(8):1007-12. doi: 10.1016/j.metabol.2003.12.015.
166 Polymorphisms in alcohol and tobacco metabolism genes in head and neck cancer in the Basque Country.J Oral Pathol Med. 2015 Nov;44(10):769-75. doi: 10.1111/jop.12305. Epub 2015 Jan 31.
167 The shunting of arachidonic acid metabolism to 5-lipoxygenase and cytochrome p450 epoxygenase antagonizes the anti-cancer effect of cyclooxygenase-2 inhibition in head and neck cancer cells.Cell Oncol (Dordr). 2012 Feb;35(1):1-8. doi: 10.1007/s13402-011-0051-7. Epub 2011 Jun 8.
168 L-DOPA decarboxylase mRNA expression is associated with tumor stage and size in head and neck squamous cell carcinoma: a retrospective cohort study.BMC Cancer. 2012 Oct 20;12:484. doi: 10.1186/1471-2407-12-484.
169 Hypoxia-induced energy stress inhibits the mTOR pathway by activating an AMPK/REDD1 signaling axis in head and neck squamous cell carcinoma.Neoplasia. 2008 Nov;10(11):1295-302. doi: 10.1593/neo.08586.
170 Overexpression of DDR2 contributes to cell invasion and migration in head and neck squamous cell carcinoma.Cancer Biol Ther. 2014 May;15(5):612-22. doi: 10.4161/cbt.28181. Epub 2014 Feb 20.
171 Overexpression of p68 mRNA in head and neck squamous cell carcinoma cells.Anticancer Res. 2006 May-Jun;26(3A):1941-6.
172 Decreased plasma DEK Oncogene Levels Correlate with p16-Negative Disease and Advanced Tumor Stage in a Case-Control Study of Patients with Head and Neck Squamous Cell Carcinoma.Transl Oncol. 2018 Feb;11(1):168-174. doi: 10.1016/j.tranon.2017.12.001. Epub 2017 Dec 28.
173 Histogram analysis parameters identify multiple associations between DWI and DCE MRI in head and neck squamous cell carcinoma.Magn Reson Imaging. 2018 Jan;45:72-77. doi: 10.1016/j.mri.2017.09.015. Epub 2017 Sep 28.
174 Up-regulation of Histone Methyltransferase, DOT1L, by Matrix Hyaluronan Promotes MicroRNA-10 Expression Leading to Tumor Cell Invasion and Chemoresistance in Cancer Stem Cells from Head and Neck Squamous Cell Carcinoma.J Biol Chem. 2016 May 13;291(20):10571-85. doi: 10.1074/jbc.M115.700021. Epub 2016 Mar 21.
175 Correlation of tumor marker expression with nodal disease burden in metastatic head and neck cancer.Otolaryngol Head Neck Surg. 2013 Aug;149(2):261-8. doi: 10.1177/0194599813486876. Epub 2013 Apr 26.
176 Combined effects of E2F1 and E2F2 polymorphisms on risk and early onset of squamous cell carcinoma of the head and neck.Mol Carcinog. 2012 Oct;51 Suppl 1(Suppl 1):E132-41. doi: 10.1002/mc.21882. Epub 2012 Feb 17.
177 Expression levels of insulin-like growth factors 1 and 2 in head and neck squamous cell carcinoma.Growth Horm IGF Res. 2014 Aug;24(4):137-41. doi: 10.1016/j.ghir.2014.04.003. Epub 2014 Apr 22.
178 Design of a phase I clinical trial to evaluate intratumoral delivery of ErbB-targeted chimeric antigen receptor T-cells in locally advanced or recurrent head and neck cancer.Hum Gene Ther Clin Dev. 2013 Sep;24(3):134-42. doi: 10.1089/humc.2013.144.
179 Serum biomarkers for detection of head and neck squamous cell carcinoma.Head Neck. 2016 Jan;38(1):9-14. doi: 10.1002/hed.23842. Epub 2015 Jun 26.
180 NGFI-A Binding Protein 2 Promotes EGF-Dependent HNSCC Cell Invasion.Cancers (Basel). 2019 Mar 6;11(3):315. doi: 10.3390/cancers11030315.
181 Hypoxic regulation of the PERK/ATF4/LAMP3-arm of the unfolded protein response in head and neck squamous cell carcinoma.Head Neck. 2015 Jun;37(6):896-905. doi: 10.1002/hed.23693. Epub 2014 Jun 27.
182 Caspase-mediated cleavage of RNA-binding protein HuR regulates c-Myc protein expression after hypoxic stress.J Biol Chem. 2011 Sep 16;286(37):32333-43. doi: 10.1074/jbc.M111.255927. Epub 2011 Jul 27.
183 Prevalence of high-risk human papillomavirus infection and cancer gene mutations in nonmalignant tonsils.Oral Oncol. 2017 Oct;73:77-82. doi: 10.1016/j.oraloncology.2017.08.010. Epub 2017 Aug 18.
184 Prognostic value of the expression of epithelial cell adhesion molecules in head and neck squamous cell carcinoma treated by definitive radiotherapy.J Radiat Res. 2019 Nov 22;60(6):803-811. doi: 10.1093/jrr/rrz053.
185 Quantitative chemical proteomics reveals new potential drug targets in head and neck cancer.Mol Cell Proteomics. 2011 Dec;10(12):M111.011635. doi: 10.1074/mcp.M111.011635. Epub 2011 Sep 28.
186 Epithelial-mesenchymal transition regulated by EphA2 contributes to vasculogenic mimicry formation of head and neck squamous cell carcinoma.Biomed Res Int. 2014;2014:803914. doi: 10.1155/2014/803914. Epub 2014 Apr 17.
187 Alteration of MMP-2 and -14 expression by imatinib in HPV-positive and -negative squamous cell carcinoma.Oncol Rep. 2012 Jul;28(1):172-8. doi: 10.3892/or.2012.1766. Epub 2012 Apr 20.
188 Role of EphB3 Receptor in Mediating Head and Neck Tumor Growth, Cell Migration, and Response to PI3K Inhibitor.Mol Cancer Ther. 2018 Sep;17(9):2049-2059. doi: 10.1158/1535-7163.MCT-17-1163. Epub 2018 Jul 3.
189 Inhibition of EphB4-Ephrin-B2 Signaling Reprograms the Tumor Immune Microenvironment in Head and Neck Cancers.Cancer Res. 2019 May 15;79(10):2722-2735. doi: 10.1158/0008-5472.CAN-18-3257. Epub 2019 Mar 20.
190 MET activation confers resistance to cetuximab, and prevents HER2 and HER3 upregulation in head and neck cancer.Int J Cancer. 2019 Aug 1;145(3):748-762. doi: 10.1002/ijc.32170. Epub 2019 Feb 11.
191 Regulation of cisplatin-resistant head and neck squamous cell carcinoma by the SRC/ETS-1 signaling pathway.BMC Cancer. 2019 May 22;19(1):485. doi: 10.1186/s12885-019-5664-7.
192 Dysregulation of junctional adhesion molecule-A via p63/GATA-3 in head and neck squamous cell carcinoma.Oncotarget. 2016 Jun 7;7(23):33887-900. doi: 10.18632/oncotarget.8432.
193 Coordinated Activation of Toll-Like Receptor8 (TLR8) and NLRP3 by the TLR8 Agonist, VTX-2337, Ignites Tumoricidal Natural Killer Cell Activity.PLoS One. 2016 Feb 29;11(2):e0148764. doi: 10.1371/journal.pone.0148764. eCollection 2016.
194 Effect of tumour-cell-derived or recombinant keratinocyte growth factor (KGF) on proliferation and radioresponse of human epithelial tumour cells (HNSCC) and normal keratinocytes in vitro.Radiat Environ Biophys. 2010 May;49(2):261-70. doi: 10.1007/s00411-010-0271-7. Epub 2010 Mar 7.
195 Mutation of chromatin regulators and focal hotspot alterations characterize human papillomavirus-positive oropharyngeal squamous cell carcinoma.Cancer. 2019 Jul 15;125(14):2423-2434. doi: 10.1002/cncr.32068. Epub 2019 Apr 1.
196 X-linked FHL1 as a novel therapeutic target for head and neck squamous cell carcinoma.Oncotarget. 2016 Mar 22;7(12):14537-50. doi: 10.18632/oncotarget.7478.
197 The transcription factor FOXM1 regulates the balance between proliferation and aberrant differentiation in head and neck squamous cell carcinoma.J Pathol. 2020 Jan;250(1):107-119. doi: 10.1002/path.5342. Epub 2019 Dec 3.
198 Epigenetic inactivation of galanin receptors in salivary duct carcinoma of the parotid gland: Potential utility as biomarkers for prognosis.Oncol Lett. 2018 Jun;15(6):9043-9050. doi: 10.3892/ol.2018.8525. Epub 2018 Apr 18.
199 Galanin is an epigenetically silenced tumor suppressor gene in gastric cancer cells.PLoS One. 2018 Feb 20;13(2):e0193275. doi: 10.1371/journal.pone.0193275. eCollection 2018.
200 Epigenetic inactivation of galanin and GALR1/2 is associated with early recurrence in head and neck cancer.Clin Exp Metastasis. 2016 Feb;33(2):187-95. doi: 10.1007/s10585-015-9768-4. Epub 2015 Nov 16.
201 Immunogenomic correlates of response to cetuximab monotherapy in head and neck squamous cell carcinoma.Head Neck. 2019 Aug;41(8):2591-2601. doi: 10.1002/hed.25726. Epub 2019 Mar 4.
202 Elevated gastrin-releasing peptide receptor mRNA expression in buccal mucosa: association with head and neck squamous cell carcinoma.Head Neck. 2013 Feb;35(2):270-9. doi: 10.1002/hed.22963. Epub 2012 Mar 20.
203 Association of glutathione S-transferase omega gene polymorphisms with progression of head and neck cancer.Mol Biol Rep. 2012 Dec;39(12):10915-20. doi: 10.1007/s11033-012-1991-3. Epub 2012 Oct 20.
204 A phase 1 trial of Vorinostat in combination with concurrent chemoradiation therapy in the treatment of advanced staged head and neck squamous cell carcinoma.Invest New Drugs. 2019 Aug;37(4):702-710. doi: 10.1007/s10637-018-0696-4. Epub 2018 Dec 19.
205 Enhanced levels of Hsulf-1 interfere with heparin-binding growth factor signaling in pancreatic cancer.Mol Cancer. 2005 Apr 7;4(1):14. doi: 10.1186/1476-4598-4-14.
206 Weighted gene co-expression network analysis and prognostic analysis identifies hub genes and the molecular mechanism related to head and neck squamous cell carcinoma.Cancer Biol Ther. 2019;20(6):750-759. doi: 10.1080/15384047.2018.1564560. Epub 2019 Mar 22.
207 Silencing of high-mobility group box 2 (HMGB2) modulates cisplatin and 5-fluorouracil sensitivity in head and neck squamous cell carcinoma.Proteomics. 2015 Jan;15(2-3):383-93. doi: 10.1002/pmic.201400338.
208 Homeobox gene expression profile indicates HOXA5 as a candidate prognostic marker in oral squamous cell carcinoma.Int J Oncol. 2012 Apr;40(4):1180-8. doi: 10.3892/ijo.2011.1321. Epub 2011 Dec 29.
209 Induction of heparanase by HPV E6 oncogene in head and neck squamous cell carcinoma.J Cell Mol Med. 2014 Jan;18(1):181-6. doi: 10.1111/jcmm.12179. Epub 2013 Nov 28.
210 p90 ribosomal S6 kinase 2 promotes invasion and metastasis of human head and neck squamous cell carcinoma cells.J Clin Invest. 2010 Apr;120(4):1165-77. doi: 10.1172/JCI40582. Epub 2010 Mar 15.
211 Interleukin-28B acts synergistically with cisplatin to suppress the growth of head and neck squamous cell carcinoma.J Immunother. 2011 Mar;34(2):139-48. doi: 10.1097/CJI.0b013e318204ed70.
212 Np63 promotes IGF1 signalling through IRS1 in squamous cell carcinoma.Aging (Albany NY). 2018 Dec 28;10(12):4224-4240. doi: 10.18632/aging.101725.
213 Serum Levels of IGF-1 and IGFBP-3 in Relation to Clinical and Pathobiological Aspects of Head and Neck Squamous Cell Carcinomas.Anticancer Res. 2017 Jun;37(6):3281-3286. doi: 10.21873/anticanres.11693.
214 Methylation status of insulin-like growth factor-binding protein 7 concurs with the malignance of oral tongue cancer.J Exp Clin Cancer Res. 2015 Feb 24;34(1):20. doi: 10.1186/s13046-015-0138-5.
215 Interleukin-1 alpha increases anti-tumor efficacy of cetuximab in head and neck squamous cell carcinoma.J Immunother Cancer. 2019 Mar 19;7(1):79. doi: 10.1186/s40425-019-0550-z.
216 Interleukin-4 receptor -based hybrid peptide effectively induces antitumor activity in head and neck squamous cell carcinoma.Oncol Rep. 2013 Jun;29(6):2147-53. doi: 10.3892/or.2013.2387. Epub 2013 Apr 4.
217 Identification of molecular targets in head and neck squamous cell carcinomas based on genome-wide gene expression profiling.Oncol Rep. 2007 Dec;18(6):1489-97.
218 Frequent aberrant expression of the human ether go-go (hEAG1) potassium channel in head and neck cancer: pathobiological mechanisms and clinical implications.J Mol Med (Berl). 2012 Oct;90(10):1173-84. doi: 10.1007/s00109-012-0893-0. Epub 2012 Mar 31.
219 Functional genetic screens identify genes essential for tumor cell survival in head and neck and lung cancer.Clin Cancer Res. 2013 Apr 15;19(8):1994-2003. doi: 10.1158/1078-0432.CCR-12-2539. Epub 2013 Feb 26.
220 KiSS1 mediates platinum sensitivity and metastasis suppression in head and neck squamous cell carcinoma. Oncogene. 2011 Jul 14;30(28):3163-73. doi: 10.1038/onc.2011.39. Epub 2011 Mar 7.
221 Identification of differentially expressed genes in HPV-positive and HPV-negative oropharyngeal squamous cell carcinomas.Eur J Cancer. 2007 Jan;43(2):415-32. doi: 10.1016/j.ejca.2006.09.001. Epub 2006 Oct 31.
222 Targeting the sheddase activity of ADAM17 by an anti-ADAM17 antibody D1(A12) inhibits head and neck squamous cell carcinoma cell proliferation and motility via blockage of bradykinin induced HERs transactivation.Int J Biol Sci. 2014 Jun 21;10(7):702-14. doi: 10.7150/ijbs.9326. eCollection 2014.
223 Decreasing cytokeratin 17 expression in head and neck cancer predicts nodal metastasis and poor prognosis: The first evidence.Clin Otolaryngol. 2018 Aug;43(4):1010-1018. doi: 10.1111/coa.13092. Epub 2018 Apr 16.
224 Diagnostic potential of 1-step nucleic acid amplification assay in patients with head and neck squamous cell carcinoma based on CK19 expression in a primary lesion.Head Neck. 2016 Apr;38 Suppl 1:E239-45. doi: 10.1002/hed.23979. Epub 2015 Jun 25.
225 Determination of Pyruvate Metabolic Fates Modulates Head and Neck Tumorigenesis.Neoplasia. 2019 Jul;21(7):641-652. doi: 10.1016/j.neo.2019.04.007. Epub 2019 May 14.
226 Detection of Distinct Changes in Gene-expression Profiles in Specimens of Tumors and Transition Zones of Tenascin-positive/-negative Head and Neck Squamous Cell Carcinoma.Anticancer Res. 2018 Mar;38(3):1279-1290. doi: 10.21873/anticanres.12350.
227 Elevated exosomal lysyl oxidase like 2 is a potential biomarker for head and neck squamous cell carcinoma.Laryngoscope. 2020 May;130(5):E327-E334. doi: 10.1002/lary.28142. Epub 2019 Jun 20.
228 Lysophosphatidic acid receptor 4 signaling potentially modulates malignant behavior in human head and neck squamous cell carcinoma cells.Int J Oncol. 2013 May;42(5):1560-8. doi: 10.3892/ijo.2013.1849. Epub 2013 Mar 5.
229 PARP-1 inhibitors sensitize HNSCC cells to APR-246 by inactivation of thioredoxin reductase 1 (TrxR1) and promotion of ROS accumulation. Oncotarget. 2017 Sep 26;9(2):1885-1897. doi: 10.18632/oncotarget.21277. eCollection 2018 Jan 5.
230 Lymphotoxin- Interacts with Methylated EGFR to Mediate Acquired Resistance to Cetuximab in Head and Neck Cancer.Clin Cancer Res. 2017 Aug 1;23(15):4388-4401. doi: 10.1158/1078-0432.CCR-16-1955. Epub 2017 Feb 14.
231 Clinical significance of micrometastatic cells detected by E48 (Ly-6D) reverse transcription-polymerase chain reaction in bone marrow of head and neck cancer patients.Clin Cancer Res. 2004 Dec 1;10(23):7827-33. doi: 10.1158/1078-0432.CCR-04-1090.
232 Characterization of the human Ly-6 antigens, the newly annotated member Ly-6K included, as molecular markers for head-and-neck squamous cell carcin... Int J Cancer. 2003 Mar 1;103(6):768-74.
233 Lymphatic vessel density in vocal cord carcinomas assessed with LYVE-1 receptor expression.Radiother Oncol. 2005 Nov;77(2):172-5. doi: 10.1016/j.radonc.2005.09.013. Epub 2005 Oct 17.
234 A Comprehensive Expression Analysis of Cancer Testis Antigens in Head and Neck Squamous Cell Carcinoma Revels MAGEA3/6 as a Marker for Recurrence.Mol Cancer Ther. 2015 Mar;14(3):828-34. doi: 10.1158/1535-7163.MCT-14-0796. Epub 2015 Jan 6.
235 MAP2K1 is a potential therapeutic target in erlotinib resistant head and neck squamous cell carcinoma.Sci Rep. 2019 Dec 11;9(1):18793. doi: 10.1038/s41598-019-55208-5.
236 Inhibition of MEK with trametinib enhances the efficacy of anti-PD-L1 inhibitor by regulating anti-tumor immunity in head and neck squamous cell carcinoma.Oncoimmunology. 2018 Sep 21;8(1):e1515057. doi: 10.1080/2162402X.2018.1515057. eCollection 2019.
237 Evidence for local and systemic activation of immune cells by peritumoral injections of interleukin 2 in patients with advanced squamous cell carcinoma of the head and neck.Cancer Res. 1993 Dec 1;53(23):5654-62.
238 Head and neck cancer cells and xenografts are very sensitive to palytoxin: decrease of c-jun n-terminale kinase-3 expression enhances palytoxin toxicity.Mol Cancer. 2013 Feb 14;12:12. doi: 10.1186/1476-4598-12-12.
239 Subpath analysis of each subtype of head and neck cancer based on the regulatory relationship between miRNAs and biological pathways.Oncol Rep. 2015 Oct;34(4):1745-54. doi: 10.3892/or.2015.4150. Epub 2015 Jul 24.
240 MELK inhibition targets cancer stem cells through downregulation of SOX2 expression in head and neck cancer cells.Oncol Rep. 2019 Apr;41(4):2540-2548. doi: 10.3892/or.2019.6988. Epub 2019 Jan 30.
241 A systematic review and meta-analysis approach on diagnostic value of MLH1 promoter methylation for head and neck squamous cell carcinoma.Medicine (Baltimore). 2019 Oct;98(43):e17651. doi: 10.1097/MD.0000000000017651.
242 p120-Catenin Downregulation and PIK3CA Mutations Cooperate to Induce Invasion through MMP1 in HNSCC.Mol Cancer Res. 2017 Oct;15(10):1398-1409. doi: 10.1158/1541-7786.MCR-17-0108. Epub 2017 Jun 21.
243 MMP-10/stromelysin-2 promotes invasion of head and neck cancer.PLoS One. 2011;6(10):e25438. doi: 10.1371/journal.pone.0025438. Epub 2011 Oct 5.
244 MT4-MMP promotes invadopodia formation and cell motility in FaDu head and neck cancer cells.Biochem Biophys Res Commun. 2020 Feb 19;522(4):1009-1014. doi: 10.1016/j.bbrc.2019.12.009. Epub 2019 Dec 5.
245 Synergistic effect of stromelysin-1 (matrix metalloproteinase-3) promoter (-1171 5A->6A) polymorphism in oral submucous fibrosis and head and neck lesions.BMC Cancer. 2010 Jul 14;10:369. doi: 10.1186/1471-2407-10-369.
246 Autocrine and paracrine loops between cancer cells and macrophages promote lymph node metastasis via CCR4/CCL22 in head and neck squamous cell carcinoma.Int J Cancer. 2013 Jun 15;132(12):2755-66. doi: 10.1002/ijc.27966. Epub 2012 Dec 17.
247 Dysregulated miR-363 affects head and neck cancer invasion and metastasis by targeting podoplanin.Int J Biochem Cell Biol. 2013 Mar;45(3):513-20. doi: 10.1016/j.biocel.2012.12.004. Epub 2012 Dec 12.
248 miR-30e-5p represses angiogenesis and metastasis by directly targeting AEG-1 in squamous cell carcinoma of the head and neck.Cancer Sci. 2020 Feb;111(2):356-368. doi: 10.1111/cas.14259. Epub 2019 Dec 30.
249 Association between 11 genetic polymorphisms in folate-metabolising genes and head and neck cancer risk.Eur J Cancer. 2012 Jul;48(10):1525-31. doi: 10.1016/j.ejca.2011.09.025. Epub 2011 Nov 1.
250 Inhibition of nicotinamide phosphoribosyltransferase and depletion of nicotinamide adenine dinucleotide contribute to arsenic trioxide suppression of oral squamous cell carcinoma. Toxicol Appl Pharmacol. 2017 Sep 15;331:54-61. doi: 10.1016/j.taap.2017.05.008. Epub 2017 May 10.
251 Decreased NK cells in patients with head and neck cancer determined in archival DNA.Clin Cancer Res. 2012 Nov 15;18(22):6147-54. doi: 10.1158/1078-0432.CCR-12-1008. Epub 2012 Sep 26.
252 Decreased expression of GRIM-19 by DNA hypermethylation promotes aerobic glycolysis and cell proliferation in head and neck squamous cell carcinoma.Oncotarget. 2015 Jan 1;6(1):101-15. doi: 10.18632/oncotarget.2684.
253 Vimentin and Non-Muscle Myosin IIA are Members of the Neural Precursor Cell Expressed Developmentally Down-Regulated 9 (NEDD9) Interactome in Head and Neck Squamous Cell Carcinoma Cells.Transl Oncol. 2019 Jan;12(1):49-61. doi: 10.1016/j.tranon.2018.09.006. Epub 2018 Sep 26.
254 WHSC1 promotes oncogenesis through regulation of NIMA-related kinase-7 in squamous cell carcinoma of the head and neck.Mol Cancer Res. 2015 Feb;13(2):293-304. doi: 10.1158/1541-7786.MCR-14-0292-T. Epub 2014 Oct 3.
255 Relevance of Neurotrophin Receptors CD271 and TrkC for Prognosis, Migration, and Proliferation in Head and Neck Squamous Cell Carcinoma.Cells. 2019 Sep 28;8(10):1167. doi: 10.3390/cells8101167.
256 EGFR-targeted mAb therapy modulates autophagy in head and neck squamous cell carcinoma through NLRX1-TUFM protein complex.Oncogene. 2016 Sep 8;35(36):4698-707. doi: 10.1038/onc.2016.11. Epub 2016 Feb 15.
257 Nuclear localization of Nm23-H1 in head and neck squamous cell carcinoma is associated with radiation resistance.Cancer. 2011 May 1;117(9):1864-73. doi: 10.1002/cncr.25760. Epub 2010 Nov 18.
258 The pregnane X receptor (PXR) and the nuclear receptor corepressor 2 (NCoR2) modulate cell growth in head and neck squamous cell carcinoma.PLoS One. 2018 Feb 22;13(2):e0193242. doi: 10.1371/journal.pone.0193242. eCollection 2018.
259 Genomic landscape of human papillomavirus-associated cancers.Clin Cancer Res. 2015 May 1;21(9):2009-19. doi: 10.1158/1078-0432.CCR-14-1101. Epub 2015 Mar 16.
260 Specific blockade CD73 alters the "exhausted" phenotype of T cells in head and neck squamous cell carcinoma.Int J Cancer. 2018 Sep 15;143(6):1494-1504. doi: 10.1002/ijc.31534.
261 microRNA-203 suppresses invasion and epithelial-mesenchymal transition induction via targeting NUAK1 in head and neck cancer.Oncotarget. 2016 Feb 16;7(7):8223-39. doi: 10.18632/oncotarget.6972.
262 Modulation of the opioid growth factor ([Met(5)]-enkephalin)-opioid growth factor receptor axis: novel therapies for squamous cell carcinoma of the head and neck.Head Neck. 2012 Apr;34(4):513-9. doi: 10.1002/hed.21759. Epub 2011 May 16.
263 Cumulative meta-analysis and trial sequential analysis of correlation between hOGG1 Ser326Cys polymorphism and the risk of head and neck squamous cell carcinoma.Oncotarget. 2018 Jan 6;9(16):13077-13087. doi: 10.18632/oncotarget.24055. eCollection 2018 Feb 27.
264 P2X7 receptor and NLRP3 inflammasome activation in head and neck cancer.Oncotarget. 2017 Jul 25;8(30):48972-48982. doi: 10.18632/oncotarget.16903.
265 High P4HA1 expression is an independent prognostic factor for poor overall survival and recurrent-free survival in head and neck squamous cell carcinoma.J Clin Lab Anal. 2020 Mar;34(3):e23107. doi: 10.1002/jcla.23107. Epub 2019 Nov 29.
266 Regulation of HIF-1 alpha by the proprotein convertases furin and PC7 in human squamous carcinoma cells.Mol Carcinog. 2015 Sep;54(9):698-706. doi: 10.1002/mc.22131. Epub 2014 Jan 16.
267 Upregulation of PD-L1 and PD-L2 in neck node metastases of head and neck squamous cell carcinoma.Head Neck. 2019 Aug;41(8):2484-2491. doi: 10.1002/hed.25713. Epub 2019 Mar 1.
268 The Reversal of Immune Exclusion Mediated by Tadalafil and an Anti-tumor Vaccine Also Induces PDL1 Upregulation in Recurrent Head and Neck Squamous Cell Carcinoma: Interim Analysis of a Phase I Clinical Trial.Front Immunol. 2019 May 31;10:1206. doi: 10.3389/fimmu.2019.01206. eCollection 2019.
269 A Phase 1b Study of Cetuximab and BYL719 (Alpelisib) Concurrent with Intensity Modulated Radiation Therapy in Stage III-IVB Head and Neck Squamous Cell Carcinoma.Int J Radiat Oncol Biol Phys. 2020 Mar 1;106(3):564-570. doi: 10.1016/j.ijrobp.2019.09.050. Epub 2019 Oct 31.
270 The functional promoter polymorphism (-842G>C) in the PIN1 gene is associated with decreased risk of breast cancer in non-Hispanic white women 55 years and younger.Breast Cancer Res Treat. 2010 Jul;122(1):243-9. doi: 10.1007/s10549-009-0682-9. Epub 2009 Dec 24.
271 Role of protein kinase N2 (PKN2) in cigarette smoke-mediated oncogenic transformation of oral cells.J Cell Commun Signal. 2018 Dec;12(4):709-721. doi: 10.1007/s12079-017-0442-2. Epub 2018 Feb 26.
272 Peroxiredoxin IV protects cells from radiation-induced apoptosis in head-and-neck squamous cell carcinoma.Int J Radiat Oncol Biol Phys. 2009 Mar 15;73(4):1196-202. doi: 10.1016/j.ijrobp.2008.10.070.
273 Prolactin receptor is a negative prognostic factor in patients with squamous cell carcinoma of the head and neck.Br J Cancer. 2011 May 10;104(10):1641-8. doi: 10.1038/bjc.2011.131. Epub 2011 Apr 19.
274 Coordinated expression of cyclin-dependent kinase-4 and its regulators in human oral tumors.Anticancer Res. 2014 Jul;34(7):3285-92.
275 A role for COX2-derived PGE2 and PGE2-receptor subtypes in head and neck squamous carcinoma cell proliferation.Oral Oncol. 2010 Dec;46(12):880-7. doi: 10.1016/j.oraloncology.2010.09.005. Epub 2010 Oct 14.
276 Expression of cyclooxygenase-2 and microsomal prostagalandin E synthase-1 in head and neck squamous cell carcinoma.Auris Nasus Larynx. 2010 Aug;37(4):482-7. doi: 10.1016/j.anl.2009.11.009. Epub 2010 Jan 19.
277 Genetic polymorphisms in the PTPN13 gene and risk of squamous cell carcinoma of head and neck.Carcinogenesis. 2009 Dec;30(12):2053-8. doi: 10.1093/carcin/bgp265.
278 Effects of culture method on response to EGFR therapy in head and neck squamous cell carcinoma cells.Sci Rep. 2019 Aug 28;9(1):12480. doi: 10.1038/s41598-019-48764-3.
279 RACK1 and stratifin target DeltaNp63alpha for a proteasome degradation in head and neck squamous cell carcinoma cells upon DNA damage.Cell Cycle. 2004 Oct;3(10):1285-95. doi: 10.4161/cc.3.10.1155. Epub 2004 Oct 6.
280 Expression of retinoic acid receptor gamma correlates with retinoic acid sensitivity and metabolism in head and neck squamous cell carcinoma cell lines.Int J Cancer. 2001 Jun 1;92(5):661-5. doi: 10.1002/1097-0215(20010601)92:5<661::aid-ijc1251>3.0.co;2-o.
281 TNF- promotes c-REL/Np63 interaction and TAp73 dissociation from key genes that mediate growth arrest and apoptosis in head and neck cancer.Cancer Res. 2011 Nov 1;71(21):6867-77. doi: 10.1158/0008-5472.CAN-11-2460. Epub 2011 Sep 20.
282 ACTL6A Is Co-Amplified with p63 in Squamous Cell Carcinoma to Drive YAP Activation, Regenerative Proliferation, and Poor Prognosis.Cancer Cell. 2017 Jan 9;31(1):35-49. doi: 10.1016/j.ccell.2016.12.001. Epub 2016 Dec 29.
283 111 Integrin is Induced in a Subset of Cancer-Associated Fibroblasts in Desmoplastic Tumor Stroma and Mediates In Vitro Cell Migration.Cancers (Basel). 2019 Jun 1;11(6):765. doi: 10.3390/cancers11060765.
284 Intracellular calprotectin (S100A8/A9) controls epithelial differentiation and caspase-mediated cleavage of EGFR in head and neck squamous cell carcinoma.Oral Oncol. 2019 Aug;95:1-10. doi: 10.1016/j.oraloncology.2019.05.027. Epub 2019 Jun 4.
285 Aberrant expression of serum amyloid A in head and neck squamous cell carcinoma.J Oral Pathol Med. 2010 Jan;39(1):41-7. doi: 10.1111/j.1600-0714.2009.00777.x. Epub 2009 Apr 21.
286 CD100-plexin-B1 induces epithelial-mesenchymal transition of head and neck squamous cell carcinoma and promotes metastasis.Cancer Lett. 2019 Jul 28;455:1-13. doi: 10.1016/j.canlet.2019.04.013. Epub 2019 Apr 11.
287 Squamous Cell Carcinoma Antigen-encoding Genes SERPINB3/B4 as Potentially Useful Markers for the Stratification of HNSCC Tumours.Anticancer Res. 2018 Mar;38(3):1343-1352. doi: 10.21873/anticanres.12357.
288 Novel adenoviral gene delivery system targeted against head and neck cancer.Laryngoscope. 2008 Apr;118(4):650-8. doi: 10.1097/MLG.0b013e3181613aba.
289 The CD98 Heavy Chain Is a Marker and Regulator of Head and Neck Squamous Cell Carcinoma Radiosensitivity.Clin Cancer Res. 2019 May 15;25(10):3152-3163. doi: 10.1158/1078-0432.CCR-18-2951. Epub 2019 Jan 22.
290 SMYD2 overexpression is associated with tumor cell proliferation and a worse outcome in human papillomavirus-unrelated nonmultiple head and neck carcinomas.Hum Pathol. 2016 Mar;49:145-55. doi: 10.1016/j.humpath.2015.08.025. Epub 2015 Nov 4.
291 Effects of potentially functional polymorphisms in suppressor of cytokine signaling 3 (SOCS3) on the risk of head and neck squamous cancer.J Oral Pathol Med. 2017 Sep;46(8):598-602. doi: 10.1111/jop.12539. Epub 2017 Jan 23.
292 Targeting the XPO1-dependent nuclear export of E2F7 reverses anthracycline resistance in head and neck squamous cell carcinomas.Sci Transl Med. 2018 Jun 27;10(447):eaar7223. doi: 10.1126/scitranslmed.aar7223.
293 The Differential Impact of SRC Expression on the Prognosis of Patients with Head and Neck Squamous Cell Carcinoma.Cancers (Basel). 2019 Oct 25;11(11):1644. doi: 10.3390/cancers11111644.
294 Dysregulation of splicing proteins in head and neck squamous cell carcinoma.Cancer Biol Ther. 2016;17(2):219-29. doi: 10.1080/15384047.2016.1139234. Epub 2016 Feb 6.
295 Aberrant methylation inactivates somatostatin and somatostatin receptor type 1 in head and neck squamous cell carcinoma.PLoS One. 2015 Mar 3;10(3):e0118588. doi: 10.1371/journal.pone.0118588. eCollection 2015.
296 STAT1 inhibits T-cell exhaustion and myeloid derived suppressor cell accumulation to promote antitumor immune responses in head and neck squamous cell carcinoma.Int J Cancer. 2020 Mar 15;146(6):1717-1729. doi: 10.1002/ijc.32781. Epub 2019 Nov 29.
297 Downregulation of LINC00460 decreases STC2 and promotes autophagy of head and neck squamous cell carcinoma by up-regulating microRNA-206.Life Sci. 2019 Aug 15;231:116459. doi: 10.1016/j.lfs.2019.05.015. Epub 2019 May 8.
298 Cytoplasmic DRAK1 overexpressed in head and neck cancers inhibits TGF-1 tumor suppressor activity by binding to Smad3 to interrupt its complex for... Oncogene. 2015 Sep 24;34(39):5037-45.
299 miR-1 as a tumor suppressive microRNA targeting TAGLN2 in head and neck squamous cell carcinoma.Oncotarget. 2011 Jan-Feb;2(1-2):29-42. doi: 10.18632/oncotarget.213.
300 Activator protein 2 alpha (AP2alpha) suppresses 42 kDa C/CAAT enhancer binding protein alpha (p42(C/EBPalpha)) in head and neck squamous cell carcinoma.Int J Cancer. 2009 Mar 15;124(6):1285-92. doi: 10.1002/ijc.24087.
301 ErbB activation signatures as potential biomarkers for anti-ErbB3 treatment in HNSCC.PLoS One. 2017 Jul 19;12(7):e0181356. doi: 10.1371/journal.pone.0181356. eCollection 2017.
302 TKTL1 is activated by promoter hypomethylation and contributes to head and neck squamous cell carcinoma carcinogenesis through increased aerobic glycolysis and HIF1alpha stabilization.Clin Cancer Res. 2010 Feb 1;16(3):857-66. doi: 10.1158/1078-0432.CCR-09-2604. Epub 2010 Jan 26.
303 The proteasome inhibitor MG132 potentiates TRAIL receptor agonist-induced apoptosis by stabilizing tBid and Bik in human head and neck squamous cell carcinoma cells.Exp Cell Res. 2012 Aug 1;318(13):1564-76. doi: 10.1016/j.yexcr.2012.04.003. Epub 2012 Apr 10.
304 Overexpression of TRIM24 Stimulates Proliferation and Glucose Metabolism of Head and Neck Squamous Cell Carcinoma.Biomed Res Int. 2018 May 10;2018:6142843. doi: 10.1155/2018/6142843. eCollection 2018.
305 Mutational landscape of gingivo-buccal oral squamous cell carcinoma reveals new recurrently-mutated genes and molecular subgroups.Nat Commun. 2013;4:2873. doi: 10.1038/ncomms3873.
306 Extraribosomal function of metallopanstimulin-1: reducing paxillin in head and neck squamous cell carcinoma and inhibiting tumor growth.Int J Cancer. 2010 Feb 1;126(3):611-9. doi: 10.1002/ijc.24791.
307 Association between dietary folate intake and clinical outcome in head and neck squamous cell carcinoma.Ann Oncol. 2012 Jan;23(1):186-192. doi: 10.1093/annonc/mdr057. Epub 2011 Apr 2.
308 The autophagy associated gene, ULK1, promotes tolerance to chronic and acute hypoxia.Radiother Oncol. 2013 Sep;108(3):529-34. doi: 10.1016/j.radonc.2013.06.015. Epub 2013 Jul 9.
309 Hippo/Mst1 overexpression induces mitochondrial death in head and neck squamous cell carcinoma via activating -catenin/Drp1 pathway.Cell Stress Chaperones. 2019 Jul;24(4):807-816. doi: 10.1007/s12192-019-01008-9. Epub 2019 May 24.
310 Periostin directly and indirectly promotes tumor lymphangiogenesis of head and neck cancer.PLoS One. 2012;7(8):e44488. doi: 10.1371/journal.pone.0044488. Epub 2012 Aug 30.
311 RECQL1 and WRN proteins are potential therapeutic targets in head and neck squamous cell carcinoma.Cancer Res. 2011 Jul 1;71(13):4598-607. doi: 10.1158/0008-5472.CAN-11-0320. Epub 2011 May 13.
312 ERCC1, XPF and XPA-locoregional differences and prognostic value of DNA repair protein expression in patients with head and neck squamous cell carcinoma.Clin Oral Investig. 2019 Aug;23(8):3319-3329. doi: 10.1007/s00784-018-2751-0. Epub 2018 Nov 29.
313 Single-nucleotide polymorphisms in DNA double-strand break repair genes: association with head and neck cancer and interaction with tobacco use and alcohol consumption.Mutat Res. 2008 Oct 30;656(1-2):74-81. doi: 10.1016/j.mrgentox.2008.07.013. Epub 2008 Aug 13.
314 Verteporfin suppresses the proliferation, epithelial-mesenchymal transition and stemness of head and neck squamous carcinoma cells via inhibiting YAP1.J Cancer. 2019 Jul 10;10(18):4196-4207. doi: 10.7150/jca.34145. eCollection 2019.
315 Copper-dependent ATP7B up-regulation drives the resistance of TMEM16A-overexpressing head-and-neck cancer models to platinum toxicity.Biochem J. 2019 Dec 19;476(24):3705-3719. doi: 10.1042/BCJ20190591.
316 Sorting Nexin 5 Controls Head and Neck Squamous Cell Carcinoma Progression by Modulating FBW7.J Cancer. 2019 Jun 2;10(13):2942-2952. doi: 10.7150/jca.31055. eCollection 2019.
317 Piperlongumine and p53-reactivator APR-246 selectively induce cell death in HNSCC by targeting GSTP1.Oncogene. 2018 Jun;37(25):3384-3398. doi: 10.1038/s41388-017-0110-2. Epub 2018 Jan 18.
318 Taselisib (GDC-0032), a Potent -Sparing Small Molecule Inhibitor of PI3K, Radiosensitizes Head and Neck Squamous Carcinomas Containing Activating PIK3CA Alterations.Clin Cancer Res. 2016 Apr 15;22(8):2009-19. doi: 10.1158/1078-0432.CCR-15-2245. Epub 2015 Nov 20.
319 AKR1C1 controls cisplatin-resistance in head and neck squamous cell carcinoma through cross-talk with the STAT1/3 signaling pathway.J Exp Clin Cancer Res. 2019 Jun 10;38(1):245. doi: 10.1186/s13046-019-1256-2.
320 Assessment of cancer stem cell marker expression in primary head and neck squamous cell carcinoma shows prognostic value for aldehyde dehydrogenase (ALDH1A1).Eur J Pharmacol. 2020 Jan 15;867:172837. doi: 10.1016/j.ejphar.2019.172837. Epub 2019 Dec 5.
321 Polymorphisms in metabolizing enzymes and the risk of head and neck squamous cell carcinoma in the Slavic population of the central Europe.Neoplasma. 2010;57(5):415-21. doi: 10.4149/neo_2010_05_415.
322 Prolyl hydroxylase PHD3 enhances the hypoxic survival and G1 to S transition of carcinoma cells.PLoS One. 2011;6(11):e27112. doi: 10.1371/journal.pone.0027112. Epub 2011 Nov 8.
323 Polymorphic TP53BP1 and TP53 gene interactions associated with risk of squamous cell carcinoma of the head and neck.Clin Cancer Res. 2007 Jul 15;13(14):4300-5. doi: 10.1158/1078-0432.CCR-07-0469.
324 Identification of Hydroxysteroid (17) dehydrogenase type 12 (HSD17B12) as a CD8+ T-cell-defined human tumor antigen of human carcinomas.Cancer Immunol Immunother. 2011 Jul;60(7):919-29. doi: 10.1007/s00262-011-1001-y. Epub 2011 Mar 16.
325 Down-regulation of malic enzyme 1 and 2: Sensitizing head and neck squamous cell carcinoma cells to therapy-induced senescence.Head Neck. 2016 Apr;38 Suppl 1:E934-40. doi: 10.1002/hed.24129. Epub 2015 Jul 18.
326 One-carbon metabolism-related gene polymorphisms and risk of head and neck squamous cell carcinoma: case-control study.Cancer Sci. 2007 Sep;98(9):1439-46. doi: 10.1111/j.1349-7006.2007.00533.x. Epub 2007 Jun 26.
327 GSTM1, GSTT1, GSTP1, CYP1A1, and NAT1 polymorphisms, tobacco use, and the risk of head and neck cancer.Cancer Epidemiol Biomarkers Prev. 2000 Feb;9(2):185-91.
328 Downregulation of the circadian Period family genes is positively correlated with poor head and neck squamous cell carcinoma prognosis.Chronobiol Int. 2019 Dec;36(12):1723-1732. doi: 10.1080/07420528.2019.1648486. Epub 2019 Oct 14.
329 Hypomethylation of LINE-1, and not centromeric SAT-, is associated with centromeric instability in head and neck squamous cell carcinoma.Cell Oncol (Dordr). 2012 Aug;35(4):259-67. doi: 10.1007/s13402-012-0085-5. Epub 2012 Jun 21.
330 A case-control study investigating the role of sulfotransferase 1A1 polymorphism in head and neck cancer.J Cancer Res Clin Oncol. 2006 Jul;132(7):466-72. doi: 10.1007/s00432-006-0093-9. Epub 2006 Mar 31.
331 Chemovirotherapy for head and neck squamous cell carcinoma with EGFR-targeted and CD/UPRT-armed oncolytic measles virus.Cancer Gene Ther. 2012 Mar;19(3):181-91. doi: 10.1038/cgt.2011.75. Epub 2011 Nov 11.
332 Multi-modality analysis supports APOBEC as a major source of mutations in head and neck squamous cell carcinoma.Oral Oncol. 2017 Nov;74:8-14. doi: 10.1016/j.oraloncology.2017.09.002. Epub 2017 Sep 13.
333 Decreased calpain 6 expression is associated with tumorigenesis and poor prognosis in HNSCC.Oncol Lett. 2017 Apr;13(4):2237-2243. doi: 10.3892/ol.2017.5687. Epub 2017 Feb 7.
334 Prognostic value of aberrant promoter hypermethylation of tumor-related genes in early-stage head and neck cancer.Oncotarget. 2016 May 3;7(18):26087-98. doi: 10.18632/oncotarget.8317.
335 DDB2 regulates Epithelial-to-Mesenchymal Transition (EMT) in Oral/Head and Neck Squamous Cell Carcinoma.Oncotarget. 2018 Oct 5;9(78):34708-34718. doi: 10.18632/oncotarget.26168. eCollection 2018 Oct 5.
336 Lower DSC1 expression is related to the poor differentiation and prognosis of head and neck squamous cell carcinoma (HNSCC).J Cancer Res Clin Oncol. 2016 Dec;142(12):2461-2468. doi: 10.1007/s00432-016-2233-1. Epub 2016 Sep 6.
337 HPV/E7 induces chemotherapy-mediated tumor suppression by ceramide-dependent mitophagy.EMBO Mol Med. 2017 Aug;9(8):1030-1051. doi: 10.15252/emmm.201607088.
338 Candidate apoptotic and DNA repair gene approach confirms involvement of ERCC1, ERCC5, TP53 and MDM2 in radiation-induced toxicity in head and neck cancer.Oral Oncol. 2017 Apr;67:70-76. doi: 10.1016/j.oraloncology.2017.02.003. Epub 2017 Feb 14.
339 In vitro evaluation of dual-antigenic PV1 peptide vaccine in head and neck cancer patients.Hum Vaccin Immunother. 2019;15(1):167-178. doi: 10.1080/21645515.2018.1520584. Epub 2018 Oct 12.
340 GNA13 expression promotes drug resistance and tumor-initiating phenotypes in squamous cell cancers.Oncogene. 2018 Mar;37(10):1340-1353. doi: 10.1038/s41388-017-0038-6. Epub 2017 Dec 19.
341 Expression profile analysis of head and neck squamous cell carcinomas using data from The Cancer Genome Atlas.Mol Med Rep. 2016 May;13(5):4259-65. doi: 10.3892/mmr.2016.5054. Epub 2016 Mar 28.
342 Survival of Head and Neck Cancer Cells Relies upon LZK Kinase-Mediated Stabilization of Mutant p53.Cancer Res. 2017 Sep 15;77(18):4961-4972. doi: 10.1158/0008-5472.CAN-17-0267. Epub 2017 Jul 31.
343 Clinical and molecular implications of MED15 in head and neck squamous cell carcinoma.Am J Pathol. 2015 Apr;185(4):1114-22. doi: 10.1016/j.ajpath.2014.12.010. Epub 2015 Mar 16.
344 Loss of Mitochondrial Tumor Suppressor Genes Expression Is Associated with Unfavorable Clinical Outcome in Head and Neck Squamous Cell Carcinoma: Data from Retrospective Study.PLoS One. 2016 Jan 19;11(1):e0146948. doi: 10.1371/journal.pone.0146948. eCollection 2016.
345 Tumor expression of major vault protein is an adverse prognostic factor for radiotherapy outcome in oropharyngeal carcinoma.Int J Radiat Oncol Biol Phys. 2007 Sep 1;69(1):133-40. doi: 10.1016/j.ijrobp.2007.02.025. Epub 2007 Apr 24.
346 Dual disruption of DNA repair and telomere maintenance for the treatment of head and neck cancer.Clin Cancer Res. 2014 Dec 15;20(24):6465-78. doi: 10.1158/1078-0432.CCR-14-0176. Epub 2014 Oct 16.
347 Prognostic significance of NDRG1 expression in oral and oropharyngeal squamous cell carcinoma.Mol Biol Rep. 2012 Dec;39(12):10157-65. doi: 10.1007/s11033-012-1889-0. Epub 2012 Sep 13.
348 Overexpression of neuromedin U is correlated with regional metastasis of head and neck squamous cell carcinoma.Mol Med Rep. 2016 Aug;14(2):1075-82. doi: 10.3892/mmr.2016.5347. Epub 2016 May 27.
349 RPA3 is a potential marker of prognosis and radioresistance for nasopharyngeal carcinoma.J Cell Mol Med. 2017 Nov;21(11):2872-2883. doi: 10.1111/jcmm.13200. Epub 2017 May 30.
350 Trinucleotide repeat length variation in the human ribosomal protein L14 gene (RPL14): localization to 3p21.3 and loss of heterozygosity in lung and oral cancers.Mutat Res. 1998 Nov;406(1):9-23. doi: 10.1016/s1383-5726(98)00006-5.
351 Down-regulation of S100A2 in lymph node metastases of head and neck cancer.Head Neck. 2007 Mar;29(3):236-43. doi: 10.1002/hed.20511.
352 High expression of ACTL8 is poor prognosis and accelerates cell progression in head and neck squamous cell carcinoma.Mol Med Rep. 2019 Feb;19(2):877-884. doi: 10.3892/mmr.2018.9716. Epub 2018 Dec 3.
353 MAPK1/ERK2 as novel target genes for pain in head and neck cancer patients.BMC Genet. 2016 Feb 13;17:40. doi: 10.1186/s12863-016-0348-7.
354 Smoking-Induced SLPI Expression Hinders HPV Infections Also in Squamous Cell Carcinomas of the Vulva.Transl Oncol. 2019 Jan;12(1):36-42. doi: 10.1016/j.tranon.2018.09.004. Epub 2018 Sep 26.
355 The special stemness functions of Tbx3 in stem cells and cancer development.Semin Cancer Biol. 2019 Aug;57:105-110. doi: 10.1016/j.semcancer.2018.09.010. Epub 2018 Sep 27.
356 ERK-TSC2 signalling in constitutively-active HRAS mutant HNSCC cells promotes resistance to PI3K inhibition.Oral Oncol. 2018 Sep;84:95-103. doi: 10.1016/j.oraloncology.2018.07.010. Epub 2018 Jul 27.
357 Identification of SERPINE1, PLAU and ACTA1 as biomarkers of head and neck squamous cell carcinoma based on integrated bioinformatics analysis.Int J Clin Oncol. 2019 Sep;24(9):1030-1041. doi: 10.1007/s10147-019-01435-9. Epub 2019 Apr 1.
358 AFF4 promotes tumorigenesis and tumor-initiation capacity of head and neck squamous cell carcinoma cells by regulating SOX2.Carcinogenesis. 2018 Jul 3;39(7):937-947. doi: 10.1093/carcin/bgy046.
359 Distinct pattern of TP53 mutations in human immunodeficiency virus-related head and neck squamous cell carcinoma.Cancer. 2018 Jan 1;124(1):84-94. doi: 10.1002/cncr.31063. Epub 2017 Oct 20.
360 Synthetic lethality of the ALDH3A1 inhibitor dyclonine and xCT inhibitors in glutathione deficiency-resistant cancer cells.Oncotarget. 2018 Sep 18;9(73):33832-33843. doi: 10.18632/oncotarget.26112. eCollection 2018 Sep 18.
361 Combined expression and prognostic significance of PPFIA1 and ALG3 in head and neck squamous cell carcinoma.Mol Biol Rep. 2019 Jun;46(3):2693-2701. doi: 10.1007/s11033-019-04712-y. Epub 2019 Feb 25.
362 AP1G1 is involved in cetuximab-mediated downregulation of ASCT2-EGFR complex and sensitization of human head and neck squamous cell carcinoma cells to ROS-induced apoptosis.Cancer Lett. 2017 Nov 1;408:33-42. doi: 10.1016/j.canlet.2017.08.012. Epub 2017 Aug 18.
363 ATG12 expression quantitative trait loci associated with head and neck squamous cell carcinoma risk in a Chinese Han population.Mol Carcinog. 2018 Aug;57(8):1030-1037. doi: 10.1002/mc.22823. Epub 2018 Apr 24.
364 Regulation of HPV16 E6 and MCL1 by SF3B1 inhibitor in head and neck cancer cells.Sci Rep. 2014 Aug 20;4:6098. doi: 10.1038/srep06098.
365 Metformin enhances gefitinib efficacy by interfering with interactions between tumor-associated macrophages and head and neck squamous cell carcinoma cells.Cell Oncol (Dordr). 2019 Aug;42(4):459-475. doi: 10.1007/s13402-019-00446-y. Epub 2019 Apr 17.
366 CCL18 promotes the metastasis of squamous cell carcinoma of the head and neck through MTDH-NF-B signalling pathway.J Cell Mol Med. 2019 Apr;23(4):2689-2701. doi: 10.1111/jcmm.14168. Epub 2019 Feb 15.
367 A systematic analysis of immune genes and overall survival in cancer patients.BMC Cancer. 2019 Dec 16;19(1):1225. doi: 10.1186/s12885-019-6414-6.
368 High pretreatment neutrophil-to-lymphocyte ratio as a predictor of poor survival prognosis in head and neck squamous cell carcinoma: Systematic review and meta-analysis.Head Neck. 2019 May;41(5):1525-1535. doi: 10.1002/hed.25583. Epub 2018 Dec 30.
369 Down-regulation of mitochondrial NADH and cytochrome b gene associated with high tumor stages in head and neck squamous cell carcinoma.Arch Oral Biol. 2019 Mar;99:107-112. doi: 10.1016/j.archoralbio.2019.01.005. Epub 2019 Jan 10.
370 Downregulated cytoplasmic polyadenylation element-binding protein-4 is associated with the carcinogenesis of head and neck squamous cell carcinoma.Oncol Lett. 2018 Mar;15(3):3226-3232. doi: 10.3892/ol.2017.7661. Epub 2017 Dec 20.
371 CUL4B promotes aggressive phenotypes of HNSCC via the activation of the Wnt/-catenin signaling pathway.Cancer Med. 2019 May;8(5):2278-2287. doi: 10.1002/cam4.1960. Epub 2019 Mar 18.
372 Reduced mRNA expression of nucleotide excision repair genes in lymphocytes and risk of squamous cell carcinoma of the head and neck.Carcinogenesis. 2017 May 1;38(5):504-510. doi: 10.1093/carcin/bgx028.
373 DDX3 Activates CBC-eIF3-Mediated Translation of uORF-Containing Oncogenic mRNAs to Promote Metastasis in HNSCC.Cancer Res. 2018 Aug 15;78(16):4512-4523. doi: 10.1158/0008-5472.CAN-18-0282. Epub 2018 Jun 19.
374 Elevated expression of Derlin-1 associates with unfavorable survival time of squamous cell carcinoma of the head and neck and promotes its malignance.J Cancer. 2017 Jul 21;8(12):2336-2345. doi: 10.7150/jca.19411. eCollection 2017.
375 DIAPH1 Is Upregulated and Inhibits Cell Apoptosis through ATR/p53/Caspase-3 Signaling Pathway in Laryngeal Squamous Cell Carcinoma.Dis Markers. 2019 Jan 14;2019:6716472. doi: 10.1155/2019/6716472. eCollection 2019.
376 In vitro humanized 3D microfluidic chip for testing personalized immunotherapeutics for head and neck cancer patients.Exp Cell Res. 2019 Oct 15;383(2):111508. doi: 10.1016/j.yexcr.2019.111508. Epub 2019 Jul 26.
377 Characterization of Alternative Splicing Events in HPV-Negative Head and Neck Squamous Cell Carcinoma Identifies an Oncogenic DOCK5 Variant.Clin Cancer Res. 2018 Oct 15;24(20):5123-5132. doi: 10.1158/1078-0432.CCR-18-0752. Epub 2018 Jun 26.
378 Effects of the novel polyphenol conjugate DPP-23 on head and neck squamous cell carcinoma cells in vitro.Oncol Lett. 2018 Jul;16(1):654-659. doi: 10.3892/ol.2018.8655. Epub 2018 May 7.
379 Integrative computational analysis of transcriptional and epigenetic alterations implicates DTX1 as a putative tumor suppressor gene in HNSCC.Oncotarget. 2017 Feb 28;8(9):15349-15363. doi: 10.18632/oncotarget.14856.
380 Clinical correlation of opposing molecular signatures in head and neck squamous cell carcinoma.BMC Cancer. 2019 Aug 23;19(1):830. doi: 10.1186/s12885-019-6059-5.
381 ELMO3 expression indicates a poor prognosis in head and neck squamous cell carcinoma - a short report.Cell Oncol (Dordr). 2017 Apr;40(2):193-198. doi: 10.1007/s13402-016-0310-8. Epub 2016 Dec 30.
382 DNA methylation biomarkers for head and neck squamous cell carcinoma.Epigenetics. 2018;13(4):398-409. doi: 10.1080/15592294.2018.1465790. Epub 2018 Aug 10.
383 Silencing of FANCD2 enhances the radiosensitivity of metastatic cervical lymph node-derived head and neck squamous cell carcinoma HSC-4 cells.Int J Oncol. 2017 Apr;50(4):1241-1250. doi: 10.3892/ijo.2017.3902. Epub 2017 Mar 7.
384 Fbxo4-mediated degradation of Fxr1 suppresses tumorigenesis in head and neck squamous cell carcinoma.Nat Commun. 2017 Nov 16;8(1):1534. doi: 10.1038/s41467-017-01199-8.
385 FcGBP was upregulated by HPV infection and correlated to longer survival time of HNSCC patients.Oncotarget. 2017 Sep 23;8(49):86503-86514. doi: 10.18632/oncotarget.21220. eCollection 2017 Oct 17.
386 Expression and Prognostic Relevance of GAGE1 and XAGE1 Cancer/Testis Antigens in Head and Neck Squamous Cell Carcinoma.Curr Mol Med. 2017;17(10):707-717. doi: 10.2174/1566524018666180322162145.
387 Integration of high-risk human papillomavirus into cellular cancer-related genes in head and neck cancer cell lines.Head Neck. 2017 May;39(5):840-852. doi: 10.1002/hed.24729. Epub 2017 Feb 25.
388 Repression of GPRC5A is associated with activated STAT3, which contributes to tumor progression of head and neck squamous cell carcinoma.Cancer Cell Int. 2017 Mar 2;17:34. doi: 10.1186/s12935-017-0406-x. eCollection 2017.
389 miR-654-5p Targets GRAP to Promote Proliferation, Metastasis, and Chemoresistance of Oral Squamous Cell Carcinoma Through Ras/MAPK Signaling.DNA Cell Biol. 2018 Apr;37(4):381-388. doi: 10.1089/dna.2017.4095. Epub 2018 Jan 24.
390 PWP1 Mediates Nutrient-Dependent Growth Control through Nucleolar Regulation of Ribosomal Gene Expression.Dev Cell. 2017 Oct 23;43(2):240-252.e5. doi: 10.1016/j.devcel.2017.09.022.
391 Development and validation of a m(6)A RNA methylation regulators-based signature for predicting the prognosis of head and neck squamous cell carcinoma.Am J Cancer Res. 2019 Oct 1;9(10):2156-2169. eCollection 2019.
392 HOPX functions as a tumour suppressor in head and neck cancer.Sci Rep. 2016 Dec 9;6:38758. doi: 10.1038/srep38758.
393 LINC00355 Promotes Tumor Progression in HNSCC by Hindering MicroRNA-195-Mediated Suppression of HOXA10 Expression.Mol Ther Nucleic Acids. 2020 Mar 6;19:61-71. doi: 10.1016/j.omtn.2019.11.002. Epub 2019 Nov 15.
394 The clinical significance of HOXA9 promoter hypermethylation in head and neck squamous cell carcinoma.J Clin Lab Anal. 2019 Jun;33(5):e22873. doi: 10.1002/jcla.22873. Epub 2019 Mar 6.
395 Novel Peptide NIRF Optical Surgical Navigation Agents for HNSCC.Molecules. 2019 Aug 23;24(17):3070. doi: 10.3390/molecules24173070.
396 Association of lnc-IL17RA-11 with increased radiation sensitivity and improved prognosis of HPV-positive HNSCC.J Cell Biochem. 2019 Oct;120(10):17438-17448. doi: 10.1002/jcb.29008. Epub 2019 May 22.
397 Validation of nucleolar protein 4 as a novel methylated tumor suppressor gene in head and neck cancer.Oncol Rep. 2014 Feb;31(2):1014-20. doi: 10.3892/or.2013.2927. Epub 2013 Dec 16.
398 Jumonji domain-containing protein 6 functions as a marker of head and neck squamous cell carcinoma at advanced stage with no effect on prognosis.Oncol Lett. 2019 Dec;18(6):5843-5852. doi: 10.3892/ol.2019.10938. Epub 2019 Sep 30.
399 A novel read-through transcript JMJD7-PLA2G4B regulates head and neck squamous cell carcinoma cell proliferation and survival.Oncotarget. 2017 Jan 10;8(2):1972-1982. doi: 10.18632/oncotarget.14081.
400 Downregulation of leucinerich?glycoprotein1 expression is associated with the tumorigenesis of head and neck squamous cell carcinoma.Oncol Rep. 2017 Mar;37(3):1503-1510. doi: 10.3892/or.2017.5377. Epub 2017 Jan 17.
401 Endothelial-derived interleukin-6 induces cancer stem cell motility by generating a chemotactic gradient towards blood vessels.Oncotarget. 2017 Nov 1;8(59):100339-100352. doi: 10.18632/oncotarget.22225. eCollection 2017 Nov 21.
402 MAML1 and TWIST1 co-overexpression promote invasion of head and neck squamous cell carcinoma.Asia Pac J Clin Oncol. 2018 Oct;14(5):e434-e441. doi: 10.1111/ajco.12843. Epub 2018 Jan 15.
403 Personalized Medicine Approach for an Exceptional Response to Multiple-recurrent and Metastatic HER2-positive Oropharyngeal Squamous Cell Carcinoma.Ann Otol Rhinol Laryngol. 2017 Apr;126(4):334-339. doi: 10.1177/0003489416687309. Epub 2017 Jan 6.
404 p53-targeted lincRNA-p21 acts as a tumor suppressor by inhibiting JAK2/STAT3 signaling pathways in head and neck squamous cell carcinoma.Mol Cancer. 2019 Mar 11;18(1):38. doi: 10.1186/s12943-019-0993-3.
405 Methyl-donor depletion of head and neck cancer cells in vitro establishes a less aggressive tumour cell phenotype.Eur J Nutr. 2018 Jun;57(4):1321-1332. doi: 10.1007/s00394-017-1411-5. Epub 2017 Mar 1.
406 DNA methylation-mediated Klotho silencing is an independent prognostic biomarker of head and neck squamous carcinoma.Cancer Manag Res. 2019 Feb 12;11:1383-1390. doi: 10.2147/CMAR.S188415. eCollection 2019.
407 Epstein-Barr virus (EBV)-encoded small RNAs (EBERs) associated with poor prognosis of head and neck carcinomas.Oncotarget. 2017 Apr 18;8(16):27328-27338. doi: 10.18632/oncotarget.16033.
408 Bioinformatic analysis of PFN2 dysregulation and its prognostic value in head and neck squamous carcinoma.Future Oncol. 2018 Feb;14(5):449-459. doi: 10.2217/fon-2017-0348. Epub 2018 Jan 11.
409 POPDC3 is a potential biomarker for prognosis and radioresistance in patients with head and neck squamous cell carcinoma.Oncol Lett. 2019 Nov;18(5):5468-5480. doi: 10.3892/ol.2019.10888. Epub 2019 Sep 19.
410 Oleate-induced PTX3 promotes head and neck squamous cell carcinoma metastasis through the up-regulation of vimentin.Oncotarget. 2017 Jun 20;8(25):41364-41378. doi: 10.18632/oncotarget.17326.
411 QKI, a miR-200 target gene, suppresses epithelial-to-mesenchymal transition and tumor growth.Int J Cancer. 2019 Sep 15;145(6):1585-1595. doi: 10.1002/ijc.32372. Epub 2019 May 14.
412 Rab25 regulates invasion and metastasis in head and neck cancer.Clin Cancer Res. 2013 Mar 15;19(6):1375-88. doi: 10.1158/1078-0432.CCR-12-2858. Epub 2013 Jan 22.
413 Inactivation or loss of TTP promotes invasion in head and neck cancer via transcript stabilization and secretion of MMP9, MMP2, and IL-6.Clin Cancer Res. 2013 Mar 1;19(5):1169-79. doi: 10.1158/1078-0432.CCR-12-2927. Epub 2013 Jan 24.
414 Mutation screening analysis of the retinoblastoma related gene RB2/p130 in sporadic ovarian cancer and head and neck squamous cell cancer.Mol Pathol. 2002 Jun;55(3):153-5. doi: 10.1136/mp.55.3.153.
415 Resveratrolinduced REG III expression enhances chemo?and radiosensitivity in head and neck cancer in xenograft mice.Oncol Rep. 2019 Jul;42(1):436-442. doi: 10.3892/or.2019.7137. Epub 2019 Apr 25.
416 A six-mRNA prognostic model to predict survival in head and neck squamous cell carcinoma.Cancer Manag Res. 2018 Dec 20;11:131-142. doi: 10.2147/CMAR.S185875. eCollection 2019.
417 Knockdown of LncRNA RHPN1-AS1 Inhibits Cell Migration, Invasion and Proliferation in Head and Neck Squamous Cell Carcinoma.J Cancer. 2019 Jul 5;10(17):4000-4008. doi: 10.7150/jca.29029. eCollection 2019.
418 Targeting EZH2 Enhances Antigen Presentation, Antitumor Immunity, and Circumvents Anti-PD-1 Resistance in Head and Neck Cancer.Clin Cancer Res. 2020 Jan 1;26(1):290-300. doi: 10.1158/1078-0432.CCR-19-1351. Epub 2019 Sep 27.
419 Potential of quantitative SEPT9 and SHOX2 methylation in plasmatic circulating cell-free DNA as auxiliary staging parameter in colorectal cancer: a prospective observational cohort study.Br J Cancer. 2018 May;118(9):1217-1228. doi: 10.1038/s41416-018-0035-8. Epub 2018 Apr 3.
420 A gene expression profile associated with perineural invasion identifies a subset of HNSCC at risk of post-surgical recurrence.Oral Oncol. 2018 Nov;86:53-60. doi: 10.1016/j.oraloncology.2018.09.005. Epub 2018 Sep 13.
421 Apigenin inhibited hypoxia induced stem cell marker expression in a head and neck squamous cell carcinoma cell line.Arch Oral Biol. 2017 Feb;74:69-74. doi: 10.1016/j.archoralbio.2016.11.010. Epub 2016 Nov 15.
422 Loss of CD169(+) Subcapsular Macrophages during Metastatic Spread of Head and Neck Squamous Cell Carcinoma.Otolaryngol Head Neck Surg. 2019 Jul;161(1):67-73. doi: 10.1177/0194599819829741. Epub 2019 Feb 12.
423 Sentinel Lymph Node-Targeted Therapy by Oncolytic Sendai Virus Suppresses Micrometastasis of Head and Neck Squamous Cell Carcinoma in an Orthotopic Nude Mouse Model.Mol Cancer Ther. 2019 Aug;18(8):1430-1438. doi: 10.1158/1535-7163.MCT-18-1372. Epub 2019 Jun 6.
424 SMARCD1 is a transcriptional target of specific non-hotspot mutant p53 forms.J Cell Physiol. 2020 May;235(5):4559-4570. doi: 10.1002/jcp.29332. Epub 2019 Oct 21.
425 Comprehensive Genomic Profiling of Patient-matched Head and Neck Cancer Cells: A Preclinical Pipeline for Metastatic and Recurrent Disease.Mol Cancer Res. 2018 Dec;16(12):1912-1926. doi: 10.1158/1541-7786.MCR-18-0056. Epub 2018 Aug 14.
426 Synthesis and preclinical investigation of (99m)Tc-p-SCN-Bzl-DTPA-cetuximab for targeting EGFR using head and neck squamous cell carcinoma (HNSCC) xenografts.Mol Biol Rep. 2019 Apr;46(2):1675-1682. doi: 10.1007/s11033-019-04616-x. Epub 2019 Jan 24.
427 Regulation of Oncogenic Targets by miR-99a-3p (Passenger Strand of miR-99a-Duplex) in Head and Neck Squamous Cell Carcinoma.Cells. 2019 Nov 28;8(12):1535. doi: 10.3390/cells8121535.
428 STING activation enhances cetuximab-mediated NK cell activation and DC maturation and correlates with HPV(+) status in head and neck cancer.Oral Oncol. 2018 Mar;78:186-193. doi: 10.1016/j.oraloncology.2018.01.019. Epub 2018 Feb 20.
429 TEAD4 overexpression promotes epithelial-mesenchymal transition and associates with aggressiveness and adverse prognosis in head neck squamous cell carcinoma.Cancer Cell Int. 2018 Nov 12;18:178. doi: 10.1186/s12935-018-0675-z. eCollection 2018.
430 Salivary MicroRNAs for Early Detection of Head and Neck Squamous Cell Carcinoma: A Case-Control Study in the High Altitude Mestizo Ecuadorian Population.Biomed Res Int. 2018 Nov 21;2018:9792730. doi: 10.1155/2018/9792730. eCollection 2018.
431 Sox11 promotes head and neck cancer progression via the regulation of SDCCAG8.J Exp Clin Cancer Res. 2019 Mar 29;38(1):138. doi: 10.1186/s13046-019-1146-7.
432 Fumonisin B1 Inhibits Endoplasmic Reticulum Stress Associated-apoptosis After FoscanPDT Combined with C6-Pyridinium Ceramide or Fenretinide.Anticancer Res. 2017 Feb;37(2):455-463. doi: 10.21873/anticanres.11337.
433 Tumor necrosis factor- triggers opposing signals in head and neck squamous cell carcinoma and induces apoptosis via mitochondrial- and non-mitochondrial-dependent pathways.Int J Oncol. 2019 Dec;55(6):1324-1338. doi: 10.3892/ijo.2019.4900. Epub 2019 Oct 17.
434 TRAF3/CYLD mutations identify a distinct subset of human papillomavirus-associated head and neck squamous cell carcinoma.Cancer. 2017 May 15;123(10):1778-1790. doi: 10.1002/cncr.30570. Epub 2017 Mar 13.
435 Ionizing radiation and TNF-alpha and stimulated expression of alpha1-antichymotrypsin gene in human squamous carcinoma cells.Acta Oncol. 1998;37(5):475-8. doi: 10.1080/028418698430430.
436 A positive feedback loop between HER2 and ADAM12 in human head and neck cancer cells increases migration and invasion.Oncogene. 2012 Jun 7;31(23):2888-98. doi: 10.1038/onc.2011.460. Epub 2011 Oct 10.
437 ALKBH overexpression in head and neck cancer: potential target for novel anticancer therapy.Sci Rep. 2019 Sep 13;9(1):13249. doi: 10.1038/s41598-019-49550-x.
438 Clinical significance of melanoma-associated antigen A1-6 expression in sputum of patients with squamous cell carcinoma of the larynx and hypopharynx.Head Neck. 2016 Apr;38 Suppl 1:E736-40. doi: 10.1002/hed.24081. Epub 2015 Jul 18.
439 Evidence for APOBEC3B mutagenesis in multiple human cancers.Nat Genet. 2013 Sep;45(9):977-83. doi: 10.1038/ng.2701. Epub 2013 Jul 14.
440 High level expression of AMAP1 protein correlates with poor prognosis and survival after surgery of head and neck squamous cell carcinoma patients.Cell Commun Signal. 2014 Mar 12;12:17. doi: 10.1186/1478-811X-12-17.
441 ARHGAP21 is a RhoGAP for RhoA and RhoC with a role in proliferation and migration of prostate adenocarcinoma cells.Biochim Biophys Acta. 2013 Feb;1832(2):365-74. doi: 10.1016/j.bbadis.2012.11.010. Epub 2012 Nov 28.
442 Genetic variants of the p53 and p73 genes jointly increase risk of second primary malignancies in patients after index squamous cell carcinoma of the head and neck.Cancer. 2012 Jan 15;118(2):485-92. doi: 10.1002/cncr.26222. Epub 2011 Jun 29.
443 -Catulin marks the invasion front of squamous cell carcinoma and is important for tumor cell metastasis.Mol Cancer Res. 2012 Jul;10(7):892-903. doi: 10.1158/1541-7786.MCR-12-0169. Epub 2012 May 30.
444 Actin-related protein 2/3 complex subunit 5 (ARPC5) contributes to cell migration and invasion and is directly regulated by tumor-suppressive microRNA-133a in head and neck squamous cell carcinoma.Int J Oncol. 2012 Jun;40(6):1770-8. doi: 10.3892/ijo.2012.1390. Epub 2012 Feb 29.
445 NFB-p50 as a blood based protein marker for early diagnosis and prognosis of head and neck squamous cell carcinoma.Biochem Biophys Res Commun. 2015 Nov 13;467(2):248-53. doi: 10.1016/j.bbrc.2015.09.181. Epub 2015 Oct 3.
446 Activating transcription factor-2 in survival mechanisms in head and neck carcinoma cells.Head Neck. 2011 Nov;33(11):1586-99. doi: 10.1002/hed.21648. Epub 2010 Dec 28.
447 Impaired mitochondrial protein synthesis in head and neck squamous cell carcinoma.Mitochondrion. 2015 Sep;24:113-21. doi: 10.1016/j.mito.2015.07.123. Epub 2015 Aug 1.
448 Data-Driven prioritisation of antibody-drug conjugate targets in head and neck squamous cell carcinoma.Oral Oncol. 2018 May;80:33-39. doi: 10.1016/j.oraloncology.2018.03.005. Epub 2018 Mar 27.
449 CTIP2 expression in human head and neck squamous cell carcinoma is linked to poorly differentiated tumor status.PLoS One. 2009;4(4):e5367. doi: 10.1371/journal.pone.0005367. Epub 2009 Apr 28.
450 Quantitative expression analysis of the apoptosis-related gene, BCL2L12, in head and neck squamous cell carcinoma.J Oral Pathol Med. 2013 Feb;42(2):154-61. doi: 10.1111/j.1600-0714.2012.01190.x. Epub 2012 Jul 2.
451 A novel functional DEC1 promoter polymorphism -249T>C reduces risk of squamous cell carcinoma of the head and neck.Carcinogenesis. 2010 Dec;31(12):2082-90. doi: 10.1093/carcin/bgq198. Epub 2010 Oct 8.
452 C1GALT1 predicts poor prognosis and is a potential therapeutic target in head and neck cancer.Oncogene. 2018 Oct;37(43):5780-5793. doi: 10.1038/s41388-018-0375-0. Epub 2018 Jun 21.
453 The cancer-testis antigen, sperm protein 17, a new biomarker and immunological target in head and neck squamous cell carcinoma.Oncotarget. 2017 Oct 31;8(59):100280-100287. doi: 10.18632/oncotarget.22213. eCollection 2017 Nov 21.
454 Cyclin L1 (CCNL1) gene alterations in human head and neck squamous cell carcinoma.Br J Cancer. 2006 Apr 10;94(7):1041-4. doi: 10.1038/sj.bjc.6603036.
455 CD151 expression is frequent but unrelated to clinical outcome in head and neck cancer.Clin Oral Investig. 2017 Jun;21(5):1503-1508. doi: 10.1007/s00784-016-1911-3. Epub 2016 Jul 21.
456 Prognosis and modulation mechanisms of COMMD6 in human tumours based on expression profiling and comprehensive bioinformatics analysis.Br J Cancer. 2019 Oct;121(8):699-709. doi: 10.1038/s41416-019-0571-x. Epub 2019 Sep 16.
457 CENP-F gene amplification and overexpression in head and neck squamous cell carcinomas.Head Neck. 2001 Feb;23(2):104-12. doi: 10.1002/1097-0347(200102)23:2<104::aid-hed1005>3.0.co;2-0.
458 Downstream targets of FOXM1: CEP55 and HELLS are cancer progression markers of head and neck squamous cell carcinoma.Oral Oncol. 2010 Jul;46(7):536-42. doi: 10.1016/j.oraloncology.2010.03.022. Epub 2010 Apr 18.
459 Role of human longevity assurance gene 1 and C18-ceramide in chemotherapy-induced cell death in human head and neck squamous cell carcinomas.Mol Cancer Ther. 2007 Feb;6(2):712-22. doi: 10.1158/1535-7163.MCT-06-0558.
460 Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective regulation of the ATF6/CHOP arm of ER-stress-response pathways.FASEB J. 2010 Jan;24(1):296-308. doi: 10.1096/fj.09-135087. Epub 2009 Sep 1.
461 Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1.Cancer Med. 2012 Dec;1(3):295-305. doi: 10.1002/cam4.35. Epub 2012 Oct 2.
462 miRNA-24-3p promotes cell proliferation and regulates chemosensitivity in head and neck squamous cell carcinoma by targeting CHD5.Future Oncol. 2016 Dec;12(23):2701-2712. doi: 10.2217/fon-2016-0179. Epub 2016 Aug 11.
463 Genomic assessments of the frequent loss of heterozygosity region on 8p21.3-p22 in head and neck squamous cell carcinoma.Cancer Genet Cytogenet. 2007 Jul 15;176(2):100-6. doi: 10.1016/j.cancergencyto.2007.04.003.
464 Protein phosphatase 2A (PP2A) inhibitor CIP2A indicates resistance to radiotherapy in rectal cancer.Cancer Med. 2018 Mar;7(3):698-706. doi: 10.1002/cam4.1361. Epub 2018 Feb 14.
465 CKMT1 and NCOA1 expression as a predictor of clinical outcome in patients with advanced-stage head and neck squamous cell carcinoma.Head Neck. 2016 Apr;38 Suppl 1:E1392-403. doi: 10.1002/hed.24232. Epub 2015 Oct 30.
466 PER1 and CLOCK: potential circulating biomarkers for head and neck squamous cell carcinoma.Head Neck. 2014 Jul;36(7):1018-26. doi: 10.1002/hed.23402. Epub 2013 Sep 12.
467 Genetic variations in TERT-CLPTM1L genes and risk of squamous cell carcinoma of the head and neck.Carcinogenesis. 2010 Nov;31(11):1977-81. doi: 10.1093/carcin/bgq179. Epub 2010 Aug 28.
468 Clusterin is a gene-specific target of microRNA-21 in head and neck squamous cell carcinoma. Clin Cancer Res. 2014 Feb 15;20(4):868-77.
469 Targeting CMTM6 Suppresses Stem Cell-Like Properties and Enhances Antitumor Immunity in Head and Neck Squamous Cell Carcinoma.Cancer Immunol Res. 2020 Feb;8(2):179-191. doi: 10.1158/2326-6066.CIR-19-0394. Epub 2019 Nov 26.
470 Downregulation of COMMD1 by miR-205 promotes a positive feedback loop for amplifying inflammatory- and stemness-associated properties of cancer cells.Cell Death Differ. 2016 May;23(5):841-52. doi: 10.1038/cdd.2015.147. Epub 2015 Nov 20.
471 COX-2 Docking Structural Analysis with Phytochemical Extracts of Rosemary: A Possible Cytotoxicity on Head and Neck Squamous Cell Carcinoma Cell Line (HEp-2).Anticancer Agents Med Chem. 2019;19(12):1473-1480. doi: 10.2174/1871520619666190618121706.
472 Immunometabolic Determinants of Chemoradiotherapy Response and Survival in Head and Neck Squamous Cell Carcinoma.Am J Pathol. 2018 Jan;188(1):72-83. doi: 10.1016/j.ajpath.2017.09.013. Epub 2017 Oct 27.
473 Epigenetic silencing of CRABP2 and MX1 in head and neck tumors.Neoplasia. 2009 Dec;11(12):1329-39. doi: 10.1593/neo.91110.
474 Expression of nucleotide excision repair genes and the risk for squamous cell carcinoma of the head and neck.Cancer. 2002 Jan 15;94(2):393-7. doi: 10.1002/cncr.10231.
475 Clinical Significance of CUB and Sushi Multiple Domains 1 Inactivation in Head and Neck Squamous Cell Carcinoma.Int J Mol Sci. 2018 Dec 12;19(12):3996. doi: 10.3390/ijms19123996.
476 Cysteine proteinase inhibitor cystatin C in squamous cell carcinoma of the head and neck: relation to prognosis.Br J Cancer. 2004 May 17;90(10):1961-8. doi: 10.1038/sj.bjc.6601830.
477 Frequent alterations of the candidate genes hMLH1, ITGA9 and RBSP3 in early dysplastic lesions of head and neck: clinical and prognostic significance.Cancer Sci. 2010 Jun;101(6):1511-20. doi: 10.1111/j.1349-7006.2010.01551.x. Epub 2010 Feb 4.
478 Cell-cell adhesion genes CTNNA2 and CTNNA3 are tumour suppressors frequently mutated in laryngeal carcinomas.Nat Commun. 2013;4:2531. doi: 10.1038/ncomms3531.
479 Cortactin Phosphorylation by Casein Kinase 2 Regulates Actin-Related Protein 2/3 Complex Activity, Invadopodia Function, and Tumor Cell Invasion.Mol Cancer Res. 2019 Apr;17(4):987-1001. doi: 10.1158/1541-7786.MCR-18-0391. Epub 2019 Jan 4.
480 Antitumor effects of telomelysin in combination with paclitaxel or cisplatin on head and neck squamous cell carcinoma.Oncol Rep. 2010 Feb;23(2):355-63.
481 Cytoglobin is upregulated by tumour hypoxia and silenced by promoter hypermethylation in head and neck cancer.Br J Cancer. 2009 Jul 7;101(1):139-44. doi: 10.1038/sj.bjc.6605121.
482 Expression profiles of selected genes in tumors and matched surgical margins in oral cavity cancer: Do we have to pay attention to the molecular analysis of the surgical margins?.Adv Clin Exp Med. 2018 Jun;27(6):833-840. doi: 10.17219/acem/79846.
483 Human -defensin 3 promotes NF-B-mediated CCR7 expression and anti-apoptotic signals in squamous cell carcinoma of the head and neck.Carcinogenesis. 2011 Feb;32(2):168-74. doi: 10.1093/carcin/bgq236. Epub 2010 Nov 11.
484 Expression signature in peripheral blood cells for molecular diagnosis of head and neck squamous cell carcinoma.Oral Dis. 2013 Jul;19(5):452-5. doi: 10.1111/odi.12019. Epub 2012 Oct 3.
485 DLC1 is unlikely to be a primary target for deletions on chromosome arm 8p22 in head and neck squamous cell carcinoma.Cancer Lett. 2004 Jun 25;209(2):207-13. doi: 10.1016/j.canlet.2003.12.018.
486 DLEC1 is not silenced solely by promoter methylation in head and neck squamous cell carcinoma.Gene. 2015 May 25;563(1):83-6. doi: 10.1016/j.gene.2015.03.004. Epub 2015 Mar 6.
487 HSP40 co-chaperone protein Tid1 suppresses metastasis of head and neck cancer by inhibiting Galectin-7-TCF3-MMP9 axis signaling.Theranostics. 2018 Jun 13;8(14):3841-3855. doi: 10.7150/thno.25784. eCollection 2018.
488 A putative oncogenic role for MPP11 in head and neck squamous cell cancer.Cancer Res. 2000 Oct 1;60(19):5529-35.
489 Impact of Epigenetic Regulation on Head and Neck Squamous Cell Carcinoma.J Dent Res. 2019 Mar;98(3):268-276. doi: 10.1177/0022034518816947. Epub 2019 Jan 7.
490 Copy number increase of oncoprotein CIP2A is associated with poor patient survival in human head and neck squamous cell carcinoma.J Oral Pathol Med. 2016 May;45(5):329-37. doi: 10.1111/jop.12372. Epub 2015 Oct 5.
491 Expression microarray analysis reveals alternative splicing of LAMA3 and DST genes in head and neck squamous cell carcinoma.PLoS One. 2014 Mar 27;9(3):e91263. doi: 10.1371/journal.pone.0091263. eCollection 2014.
492 Inhibition of G9a induces DUSP4-dependent autophagic cell death in head and neck squamous cell carcinoma.Mol Cancer. 2014 Jul 15;13:172. doi: 10.1186/1476-4598-13-172.
493 Meta-Analyses of Microarray Datasets Identifies ANO1 and FADD as Prognostic Markers of Head and Neck Cancer.PLoS One. 2016 Jan 25;11(1):e0147409. doi: 10.1371/journal.pone.0147409. eCollection 2016.
494 miR-124 Regulates the Epithelial-Restricted with Serine Box/Epidermal Growth Factor Receptor Signaling Axis in Head and Neck Squamous Cell Carcinoma.Mol Cancer Ther. 2015 Oct;14(10):2313-20. doi: 10.1158/1535-7163.MCT-14-1071. Epub 2015 Jul 30.
495 Identification of ESM1 overexpressed in head and neck squamous cell carcinoma.Cancer Cell Int. 2019 May 2;19:118. doi: 10.1186/s12935-019-0833-y. eCollection 2019.
496 Phosphorylated FADD is not prognostic for local control in T1-T2 supraglottic laryngeal carcinoma treated with radiotherapy.Laryngoscope. 2017 Sep;127(9):E301-E307. doi: 10.1002/lary.26563. Epub 2017 Mar 17.
497 Association of FANCC and PTCH1 with the development of early dysplastic lesions of the head and neck.Ann Surg Oncol. 2012 Jul;19 Suppl 3:S528-38. doi: 10.1245/s10434-011-1991-x. Epub 2011 Aug 23.
498 Assessing the spectrum of germline variation in Fanconi anemia genes among patients with head and neck carcinoma before age 50.Cancer. 2017 Oct 15;123(20):3943-3954. doi: 10.1002/cncr.30802. Epub 2017 Jul 5.
499 Sendai virus-mediated gene transfer of the c-myc suppressor far-upstream element-binding protein-interacting repressor suppresses head and neck cancer.Gene Ther. 2015 Apr;22(4):297-304. doi: 10.1038/gt.2014.123. Epub 2015 Jan 15.
500 Gold nanoclusters as a contrast agent for image-guided surgery of head and neck tumors.Nanomedicine. 2019 Aug;20:102011. doi: 10.1016/j.nano.2019.04.014. Epub 2019 May 17.
501 DNA ploidy, S-phase fraction and associations with 2-18F-fluoro-deoxy-2-D-glucose positron emission tomography findings before and during therapy of head and neck squamous cell carcinoma.Acta Otolaryngol. 2004 Aug;124(6):712-9. doi: 10.1080/00016480410016973.
502 Visualization of the timing of gene amplification during multistep head and neck tumorigenesis.Cancer Res. 2000 Nov 15;60(22):6496-502.
503 Prediction of future metastasis and molecular characterization of head and neck squamous-cell carcinoma based on transcriptome and genome analysis by microarrays.Oncogene. 2008 Nov 20;27(51):6607-22. doi: 10.1038/onc.2008.251. Epub 2008 Aug 4.
504 Dual-receptor (EGFR and c-MET) inhibition by tumor-suppressive miR-1 and miR-206 in head and neck squamous cell carcinoma.J Hum Genet. 2017 Jan;62(1):113-121. doi: 10.1038/jhg.2016.47. Epub 2016 May 12.
505 CDK2 knockdown enhances head and neck cancer cell radiosensitivity.Int J Radiat Biol. 2013 Jul;89(7):523-31. doi: 10.3109/09553002.2013.782108. Epub 2013 Apr 16.
506 Restoration of E-cadherin expression by selective Cox-2 inhibition and the clinical relevance of the epithelial-to-mesenchymal transition in head and neck squamous cell carcinoma.J Exp Clin Cancer Res. 2014 May 10;33(1):40. doi: 10.1186/1756-9966-33-40.
507 Role of GRB2-associated binder 1 in epidermal growth factor receptor-induced signaling in head and neck squamous cell carcinoma.Int J Cancer. 2013 Mar 1;132(5):1042-50. doi: 10.1002/ijc.27763. Epub 2012 Aug 28.
508 Association study of the G-protein beta3 subunit C825T polymorphism with disease progression an overall survival in patients with head and neck squamous cell carcinoma.Cancer Epidemiol Biomarkers Prev. 2008 Nov;17(11):3203-7. doi: 10.1158/1055-9965.EPI-08-0616.
509 Alterations of GPI transamidase subunits in head and neck squamous carcinoma.Mol Cancer. 2007 Nov 21;6:74. doi: 10.1186/1476-4598-6-74.
510 The prognostic value of glycerol-3-phosphate dehydrogenase 1-like expression in head and neck squamous cell carcinoma.Histopathology. 2014 Feb;64(3):348-55. doi: 10.1111/his.12258. Epub 2013 Nov 26.
511 The Proton-Sensing G-Protein Coupled Receptor GPR4 Promotes Angiogenesis in Head and Neck Cancer.PLoS One. 2016 Apr 14;11(4):e0152789. doi: 10.1371/journal.pone.0152789. eCollection 2016.
512 Cytochrome P450 2E1 and head and neck cancer: interaction with genetic and environmental risk factors.Environ Mol Mutagen. 2009 Jul;50(6):473-82. doi: 10.1002/em.20488.
513 Immune-Checkpoint Blockade Opposes CD8(+) T-cell Suppression in Human and Murine Cancer.Cancer Immunol Res. 2019 Mar;7(3):510-525. doi: 10.1158/2326-6066.CIR-18-0054. Epub 2019 Feb 6.
514 Knockdown of HPIP Inhibits the Proliferation and Invasion of Head-and-Neck Squamous Cell Carcinoma Cells by Regulating PI3K/Akt Signaling Pathway.Oncol Res. 2016;24(3):153-60. doi: 10.3727/096504016X14612603423476.
515 FOXM1 induces a global methylation signature that mimics the cancer epigenome in head and neck squamous cell carcinoma.PLoS One. 2012;7(3):e34329. doi: 10.1371/journal.pone.0034329. Epub 2012 Mar 26.
516 Gene-environment interactions of novel variants associated with head and neck cancer.Head Neck. 2012 Aug;34(8):1111-8. doi: 10.1002/hed.21867. Epub 2011 Nov 2.
517 Accumulated SET protein up-regulates and interacts with hnRNPK, increasing its binding to nucleic acids, the Bcl-xS repression, and cellular proliferation.Biochem Biophys Res Commun. 2014 Feb 28;445(1):196-202. doi: 10.1016/j.bbrc.2014.01.175. Epub 2014 Feb 4.
518 Inclusion of hnRNP L Alternative Exon 7 Is Associated with Good Prognosis and Inhibited by Oncogene SRSF3 in Head and Neck Squamous Cell Carcinoma.Biomed Res Int. 2019 Nov 13;2019:9612425. doi: 10.1155/2019/9612425. eCollection 2019.
519 The role of HOXB9 and miR-196a in head and neck squamous cell carcinoma.PLoS One. 2015 Apr 10;10(4):e0122285. doi: 10.1371/journal.pone.0122285. eCollection 2015.
520 HOXC6 is deregulated in human head and neck squamous cell carcinoma and modulates Bcl-2 expression.J Biol Chem. 2012 Oct 12;287(42):35678-35688. doi: 10.1074/jbc.M112.361675. Epub 2012 Aug 15.
521 High heregulin expression is associated with activated HER3 and may define an actionable biomarker in patients with squamous cell carcinomas of the head and neck.PLoS One. 2013;8(2):e56765. doi: 10.1371/journal.pone.0056765. Epub 2013 Feb 28.
522 Tumor-associated antigenic pattern in squamous cell carcinomas of the head and neck--analysed by SEREX.Eur J Cancer. 2013 Mar;49(4):e1-7. doi: 10.1016/j.ejca.2005.09.036. Epub 2006 Jul 11.
523 Regulation of miRNA Biogenesis and Histone Modification by K63-Polyubiquitinated DDX17 Controls Cancer Stem-like Features.Cancer Res. 2019 May 15;79(10):2549-2563. doi: 10.1158/0008-5472.CAN-18-2376. Epub 2019 Mar 15.
524 Expression of tumor markers hyaluronic acid and hyaluronidase (HYAL1) in head and neck tumors.Int J Cancer. 2003 Sep 1;106(3):438-45. doi: 10.1002/ijc.11252.
525 PYHIN genes as potential biomarkers for prognosis of human papillomavirus-positive or -negative head and neck squamous cell carcinomas.Mol Biol Rep. 2019 Jun;46(3):3333-3347. doi: 10.1007/s11033-019-04795-7. Epub 2019 Apr 12.
526 Frequent deletion of ING2 locus at 4q35.1 associates with advanced tumor stage in head and neck squamous cell carcinoma.J Cancer Res Clin Oncol. 2009 May;135(5):703-13. doi: 10.1007/s00432-008-0507-y. Epub 2008 Nov 8.
527 ING3 is required for ATM signaling and DNA repair in response to DNA double strand breaks.Cell Death Differ. 2019 Nov;26(11):2344-2357. doi: 10.1038/s41418-019-0305-x. Epub 2019 Feb 25.
528 Downregulation and translocation of nuclear ING4 is correlated with tumorigenesis and progression of head and neck squamous cell carcinoma.Oral Oncol. 2011 Mar;47(3):217-23. doi: 10.1016/j.oraloncology.2011.01.004.
529 The mutational landscape of head and neck squamous cell carcinoma.Science. 2011 Aug 26;333(6046):1157-60. doi: 10.1126/science.1208130. Epub 2011 Jul 28.
530 Increased nitric oxide levels and iNOS over-expression in oral squamous cell carcinoma.Oral Oncol. 2005 Mar;41(3):261-7. doi: 10.1016/j.oraloncology.2004.09.007.
531 Regulation of ITGA3 by the anti-tumor miR-199 family inhibits cancer cell migration and invasion in head and neck cancer.Cancer Sci. 2017 Aug;108(8):1681-1692. doi: 10.1111/cas.13298. Epub 2017 Jul 4.
532 Insulin-like growth factor binding protein-3 inhibits cell adhesion via suppression of integrin 4 expression.Oncotarget. 2015 Jun 20;6(17):15150-63. doi: 10.18632/oncotarget.3825.
533 KIF1A and EDNRB are differentially methylated in primary HNSCC and salivary rinses.Int J Cancer. 2010 Nov 15;127(10):2351-9. doi: 10.1002/ijc.25248.
534 Telomerase-specific oncolytic adenovirus: antitumor effects on radiation-resistant head and neck squamous cell carcinoma cells.Head Neck. 2014 Mar;36(3):411-8. doi: 10.1002/hed.23309. Epub 2013 Jun 1.
535 Cytokeratins 6 and 16 are frequently expressed in head and neck squamous cell carcinoma cell lines and fresh biopsies.Anticancer Res. 2005 Jul-Aug;25(4):2675-80.
536 Cytokeratin 18 expression in squamous cell carcinoma of the head and neck.Eur Arch Otorhinolaryngol. 1996;253(4-5):227-33. doi: 10.1007/BF00171132.
537 Establishment and characterization of a novel HPV-negative laryngeal squamous cell carcinoma cell line, FD-LSC-1, with missense and nonsense mutations of TP53 in the DNA-binding domain.Cancer Lett. 2014 Jan 1;342(1):92-103. doi: 10.1016/j.canlet.2013.08.041. Epub 2013 Aug 31.
538 Methylationassociated inactivation of LATS1 and its effect on demethylation or overexpression on YAP and cell biological function in human renal cell carcinoma.Int J Oncol. 2014 Dec;45(6):2511-21. doi: 10.3892/ijo.2014.2687. Epub 2014 Sep 30.
539 LDOC1 gene expression in two patients with head and neck squamous cell carcinomas and Parkinson's disease.Tumori. 2012 May-Jun;98(3):86e-88e. doi: 10.1700/1125.12418.
540 LIMD1 is more frequently altered than RB1 in head and neck squamous cell carcinoma: clinical and prognostic implications.Mol Cancer. 2010 Mar 12;9:58. doi: 10.1186/1476-4598-9-58.
541 Lysyl oxidase like-4 monoclonal antibody demonstrates therapeutic effect against head and neck squamous cell carcinoma cells and xenografts.Int J Cancer. 2016 May 15;138(10):2529-38. doi: 10.1002/ijc.29986. Epub 2016 Jan 25.
542 MAGEB2 is activated by promoter demethylation in head and neck squamous cell carcinoma.PLoS One. 2012;7(9):e45534. doi: 10.1371/journal.pone.0045534. Epub 2012 Sep 24.
543 Characterization of squamous cell carcinoma in an organotypic culture via subsurface non-linear optical molecular imaging.Exp Biol Med (Maywood). 2013 Nov 1;238(11):1233-41. doi: 10.1177/1535370213502628. Epub 2013 Oct 1.
544 Identification of an epigenetic profile classifier that is associated with survival in head and neck cancer.Cancer Res. 2012 Jun 1;72(11):2728-37. doi: 10.1158/0008-5472.CAN-11-4121-T. Epub 2012 Apr 16.
545 Replication of an adenoviral vector controlled by the human telomerase reverse transcriptase promoter causes tumor-selective tumor lysis.Cancer Res. 2003 Nov 15;63(22):7936-41.
546 MFAP2 promotes epithelial-mesenchymal transition in gastric cancer cells by activating TGF-/SMAD2/3 signaling pathway.Onco Targets Ther. 2018 Jul 12;11:4001-4017. doi: 10.2147/OTT.S160831. eCollection 2018.
547 Defects in the human leukocyte antigen class I antigen processing machinery in head and neck squamous cell carcinoma: association with clinical outcome.Clin Cancer Res. 2005 Apr 1;11(7):2552-60. doi: 10.1158/1078-0432.CCR-04-2146.
548 Targeting EZH2 regulates tumor growth and apoptosis through modulating mitochondria dependent cell-death pathway in HNSCC.Oncotarget. 2015 Oct 20;6(32):33720-32. doi: 10.18632/oncotarget.5606.
549 Smoking and drinking can induce p15 methylation in the upper aerodigestive tract of healthy individuals and patients with head and neck squamous cell carcinoma.Cancer. 2004 Jul 1;101(1):125-32. doi: 10.1002/cncr.20323.
550 Functional repeats (TGYCC)n in the p53-inducible gene 3 (PIG3) promoter and susceptibility to squamous cell carcinoma of the head and neck.Carcinogenesis. 2013 Apr;34(4):812-7. doi: 10.1093/carcin/bgs388. Epub 2012 Dec 14.
551 Tumor suppressive microRNA-133a regulates novel targets: moesin contributes to cancer cell proliferation and invasion in head and neck squamous cell carcinoma.Biochem Biophys Res Commun. 2012 Feb 10;418(2):378-83. doi: 10.1016/j.bbrc.2012.01.030. Epub 2012 Jan 12.
552 Pilot study of mucosal genetic differences in early smokers and nonsmokers.Laryngoscope. 2006 Aug;116(8):1375-9. doi: 10.1097/01.mlg.0000228133.08067.f8.
553 Opposing function of MYBBP1A in proliferation and migration of head and neck squamous cell carcinoma cells.BMC Cancer. 2012 Feb 17;12:72. doi: 10.1186/1471-2407-12-72.
554 Passenger strand of miR-145-3p acts as a tumor-suppressor by targeting MYO1B in head and neck squamous cell carcinoma.Int J Oncol. 2018 Jan;52(1):166-178. doi: 10.3892/ijo.2017.4190. Epub 2017 Nov 6.
555 Epigenetic screen of human DNA repair genes identifies aberrant promoter methylation of NEIL1 in head and neck squamous cell carcinoma.Oncogene. 2012 Dec 6;31(49):5108-16. doi: 10.1038/onc.2011.660. Epub 2012 Jan 30.
556 Hypermethylation of the retinoic acid receptor-beta(2) gene in head and neck carcinogenesis.Clin Cancer Res. 2004 Mar 1;10(5):1733-42. doi: 10.1158/1078-0432.ccr-0989-3.
557 Ninein-like protein is overexpressed in head and neck squamous cell carcinoma and contributes to cancer growth and resistance to apoptosis.Oncol Rep. 2009 Oct;22(4):789-98. doi: 10.3892/or_00000501.
558 NOVA1 induction by inflammation and NOVA1 suppression by epigenetic regulation in head and neck squamous cell carcinoma.Sci Rep. 2019 Aug 2;9(1):11231. doi: 10.1038/s41598-019-47755-8.
559 WHSC1L1-mediated EGFR mono-methylation enhances the cytoplasmic and nuclear oncogenic activity of EGFR in head and neck cancer.Sci Rep. 2017 Jan 19;7:40664. doi: 10.1038/srep40664.
560 Targeting C4-demethylating genes in the cholesterol pathway sensitizes cancer cells to EGF receptor inhibitors via increased EGF receptor degradation. Cancer Discov. 2013 Jan;3(1):96-111. doi: 10.1158/2159-8290.CD-12-0031. Epub 2012 Nov 2.
561 Axon guidance molecule semaphorin3A is a novel tumor suppressor in head and neck squamous cell carcinoma.Oncotarget. 2016 Feb 2;7(5):6048-62. doi: 10.18632/oncotarget.6831.
562 The prognostic utility of haptoglobin genotypes in squamous cell carcinoma of the head and neck.Clin Chem Lab Med. 2009;47(10):1277-83. doi: 10.1515/CCLM.2009.275.
563 Cox-2 and IL-10 polymorphisms and association with squamous cell carcinoma of the head and neck in a Korean sample.J Korean Med Sci. 2010 Jul;25(7):1024-8. doi: 10.3346/jkms.2010.25.7.1024. Epub 2010 Jun 17.
564 Enhancing radiosensitization in EphB4 receptor-expressing Head and Neck Squamous Cell Carcinomas.Sci Rep. 2016 Dec 12;6:38792. doi: 10.1038/srep38792.
565 Decreased expression of cell adhesion genes in cancer stem-like cells isolated from primary oral squamous cell carcinomas.Tumour Biol. 2018 May;40(5):1010428318780859. doi: 10.1177/1010428318780859.
566 Human papillomavirus-stratified analysis of the prognostic role of miR-21 in oral cavity and oropharyngeal squamous cell carcinoma.Pathol Int. 2014 Oct;64(10):499-507. doi: 10.1111/pin.12201. Epub 2014 Sep 19.
567 Correlation between podoplanin expression and extracapsular spread in squamous cell carcinoma of the oral cavity using subjective immunoreactivity scores and semiquantitative image analysis.Head Neck. 2017 Jan;39(1):98-108. doi: 10.1002/hed.24537. Epub 2016 Jul 20.
568 Altered expression of circadian clock genes in head and neck squamous cell carcinoma.Tumour Biol. 2012 Feb;33(1):149-55. doi: 10.1007/s13277-011-0258-2. Epub 2011 Nov 15.
569 Inactivation of 9q22.3 tumor suppressor genes predict outcome for patients with head and neck squamous cell carcinoma.Anticancer Res. 2013 Mar;33(3):1215-20.
570 Clinical performance validation of PITX2 DNA methylation as prognostic biomarker in patients with head and neck squamous cell carcinoma.PLoS One. 2017 Jun 15;12(6):e0179412. doi: 10.1371/journal.pone.0179412. eCollection 2017.
571 Identification and characterization of dysregulated P-element induced wimpy testis-interacting RNAs in head and neck squamous cell carcinoma.Oncol Lett. 2019 Mar;17(3):2615-2622. doi: 10.3892/ol.2019.9913. Epub 2019 Jan 9.
572 Loss of expression of ZAC/LOT1 in squamous cell carcinomas of head and neck.Head Neck. 2004 Apr;26(4):338-44. doi: 10.1002/hed.10386.
573 Association between novel PLCE1 variants identified in published esophageal cancer genome-wide association studies and risk of squamous cell carcinoma of the head and neck.BMC Cancer. 2011 Jun 20;11:258. doi: 10.1186/1471-2407-11-258.
574 Plectin promotes migration and invasion of cancer cells and is a novel prognostic marker for head and neck squamous cell carcinoma.J Proteomics. 2012 Mar 16;75(6):1803-15. doi: 10.1016/j.jprot.2011.12.018. Epub 2011 Dec 30.
575 Combination of fenretinide and ABT-263 induces apoptosis through NOXA for head and neck squamous cell carcinoma treatment.PLoS One. 2019 Jul 5;14(7):e0219398. doi: 10.1371/journal.pone.0219398. eCollection 2019.
576 S100A8/A9 (calprotectin) negatively regulates G2/M cell cycle progression and growth of squamous cell carcinoma.PLoS One. 2013 Jul 9;8(7):e69395. doi: 10.1371/journal.pone.0069395. Print 2013.
577 Dysregulated cholinergic network as a novel biomarker of poor prognostic in patients with head and neck squamous cell carcinoma.BMC Cancer. 2015 May 10;15:385. doi: 10.1186/s12885-015-1402-y.
578 SET protein accumulation prevents cell death in head and neck squamous cell carcinoma through regulation of redox state and autophagy.Biochim Biophys Acta Mol Cell Res. 2019 Apr;1866(4):623-637. doi: 10.1016/j.bbamcr.2019.01.005. Epub 2019 Jan 16.
579 AlloDriver: a method for the identification and analysis of cancer driver targets.Nucleic Acids Res. 2019 Jul 2;47(W1):W315-W321. doi: 10.1093/nar/gkz350.
580 Frequent promoter hypermethylation of PTPRT increases STAT3 activation and sensitivity to STAT3 inhibition in head and neck cancer.Oncogene. 2016 Mar 3;35(9):1163-9. doi: 10.1038/onc.2015.171. Epub 2015 May 18.
581 PTTG and PBF Functionally Interact with p53 and Predict Overall Survival in Head and Neck Cancer.Cancer Res. 2018 Oct 15;78(20):5863-5876. doi: 10.1158/0008-5472.CAN-18-0855. Epub 2018 Aug 28.
582 RAR beta2 suppression in head and neck squamous cell carcinoma correlates with site, histology and age.Oncol Rep. 2007 Jul;18(1):105-12.
583 RacGAP1 Is a Novel Downstream Effector of E2F7-Dependent Resistance to Doxorubicin and Is Prognostic for Overall Survival in Squamous Cell Carcinoma.Mol Cancer Ther. 2015 Aug;14(8):1939-50. doi: 10.1158/1535-7163.MCT-15-0076. Epub 2015 May 27.
584 The miR-205-5p/BRCA1/RAD17 Axis Promotes Genomic Instability in Head and Neck Squamous Cell Carcinomas.Cancers (Basel). 2019 Sep 11;11(9):1347. doi: 10.3390/cancers11091347.
585 Head and neck squamous cell carcinoma targeted chemosensitization.Otolaryngol Head Neck Surg. 2009 Aug;141(2):177-83. doi: 10.1016/j.otohns.2009.04.024.
586 RAD51C--a new human cancer susceptibility gene for sporadic squamous cell carcinoma of the head and neck (HNSCC).Oral Oncol. 2014 Mar;50(3):196-9. doi: 10.1016/j.oraloncology.2013.11.007. Epub 2013 Dec 6.
587 The tumor suppressor gene rap1GAP is silenced by miR-101-mediated EZH2 overexpression in invasive squamous cell carcinoma.Oncogene. 2011 Oct 20;30(42):4339-49. doi: 10.1038/onc.2011.141. Epub 2011 May 2.
588 Aberrant Methylation of RASSF1A Closely Associated with HNSCC, a Meta-Analysis.Sci Rep. 2016 Feb 9;6:20756. doi: 10.1038/srep20756.
589 Functional single nucleotide polymorphisms of the RASSF3 gene and susceptibility to squamous cell carcinoma of the head and neck.Eur J Cancer. 2014 Feb;50(3):582-92. doi: 10.1016/j.ejca.2013.11.009. Epub 2013 Nov 29.
590 Transcriptional regulation of retinoic acid responsive genes by cellular retinoic acid binding protein-II modulates RA mediated tumor cell proliferation and invasion.Anticancer Res. 1998 Jan-Feb;18(1A):217-24.
591 Insulin-like growth factor binding protein-3 suppresses vascular endothelial growth factor expression and tumor angiogenesis in head and neck squamous cell carcinoma.Cancer Sci. 2012 Jul;103(7):1259-66. doi: 10.1111/j.1349-7006.2012.02301.x. Epub 2012 May 25.
592 Disruption of KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex components by multiple genetic mechanisms: Association with poor prognosis in head and neck cancer.Head Neck. 2015 May;37(5):727-34. doi: 10.1002/hed.23663. Epub 2014 Jun 18.
593 High expression of Pirh2, an E3 ligase for p27, is associated with low expression of p27 and poor prognosis in head and neck cancers.Cancer Sci. 2009 May;100(5):866-72. doi: 10.1111/j.1349-7006.2009.01122.x.
594 Exome sequencing reveals recurrent REV3L mutations in cisplatin-resistant squamous cell carcinoma of head and neck.Sci Rep. 2016 Jan 21;6:19552. doi: 10.1038/srep19552.
595 The atypical Rho GTPase RhoBTB2 is required for expression of the chemokine CXCL14 in normal and cancerous epithelial cells.Oncogene. 2008 Nov 20;27(54):6856-65. doi: 10.1038/onc.2008.317. Epub 2008 Sep 1.
596 RhoC expression and head and neck cancer metastasis.Mol Cancer Res. 2009 Nov;7(11):1771-80. doi: 10.1158/1541-7786.MCR-08-0512. Epub 2009 Oct 27.
597 The p53-reactivating small molecule RITA induces senescence in head and neck cancer cells.PLoS One. 2014 Aug 13;9(8):e104821. doi: 10.1371/journal.pone.0104821. eCollection 2014.
598 Reference gene selection for head and neck squamous cell carcinoma gene expression studies.BMC Mol Biol. 2009 Aug 3;10:78. doi: 10.1186/1471-2199-10-78.
599 Investigation of the association of hRRM1 and p53R2 gene polymorphisms in head and neck squamous cell carcinomas.Med Oncol. 2014 Jul;31(7):12. doi: 10.1007/s12032-014-0012-x. Epub 2014 May 27.
600 Somatic mutations and promotor methylation of the ryanodine receptor 2 is a common event in the pathogenesis of head and neck cancer.Int J Cancer. 2019 Dec 15;145(12):3299-3310. doi: 10.1002/ijc.32481. Epub 2019 Jun 19.
601 Nuclear S100A7 is associated with poor prognosis in head and neck cancer.PLoS One. 2010 Aug 3;5(8):e11939. doi: 10.1371/journal.pone.0011939.
602 SATB2 augments Np63 in head and neck squamous cell carcinoma.EMBO Rep. 2010 Oct;11(10):777-83. doi: 10.1038/embor.2010.125. Epub 2010 Sep 10.
603 DNA microarray reveals ZNF195 and SBF1 are potential biomarkers for gemcitabine sensitivity in head and neck squamous cell carcinoma cell lines.Int J Clin Exp Pathol. 2014 Mar 15;7(4):1514-23. eCollection 2014.
604 Flow cytometric quantification of the proliferation-associated nuclear antigen p105 and DNA content in advanced head & neck cancers: results of RTOG 91-08.Int J Radiat Oncol Biol Phys. 1994 Jul 1;29(4):661-71. doi: 10.1016/0360-3016(94)90552-5.
605 Syntenin-1 is a promoter and prognostic marker of head and neck squamous cell carcinoma invasion and metastasis.Oncotarget. 2016 Dec 13;7(50):82634-82647. doi: 10.18632/oncotarget.13020.
606 Expression of 3q oncogene SEC62 in atypical fibroxanthoma-immunohistochemical analysis of 41 cases and correlation with clinical, viral and histopathologic features.Oncol Lett. 2019 Feb;17(2):1768-1776. doi: 10.3892/ol.2018.9767. Epub 2018 Nov 27.
607 MART-10, a novel vitamin D analog, inhibits head and neck squamous carcinoma cells growth through cell cycle arrest at G0/G1 with upregulation of p21 and p27 and downregulation of telomerase.J Steroid Biochem Mol Biol. 2013 Nov;138:427-34. doi: 10.1016/j.jsbmb.2013.09.002. Epub 2013 Sep 14.
608 Downregulation of SERPINB13 expression in head and neck squamous cell carcinomas associates with poor clinical outcome.Int J Cancer. 2009 Oct 1;125(7):1542-50. doi: 10.1002/ijc.24507.
609 SERPINB2 down-regulation contributes to chemoresistance in head and neck cancer.Mol Carcinog. 2014 Oct;53(10):777-86. doi: 10.1002/mc.22033. Epub 2013 May 9.
610 Technical and clinical performance of a new assay to detect squamous cell carcinoma antigen levels for the differential diagnosis of cervical, lung, and head and neck cancer.Tumour Biol. 2018 Apr;40(4):1010428318772202. doi: 10.1177/1010428318772202.
611 Tristetraprolin regulates interleukin-6, which is correlated with tumor progression in patients with head and neck squamous cell carcinoma.Cancer. 2011 Jun 15;117(12):2677-89. doi: 10.1002/cncr.25859. Epub 2011 Jan 10.
612 SNP rs1049430 in the 3'-UTR of SH3GL2 regulates its expression: Clinical and prognostic implications in head and neck squamous cell carcinoma.Biochim Biophys Acta. 2015 May;1852(5):1059-67. doi: 10.1016/j.bbadis.2015.02.009. Epub 2015 Feb 26.
613 A critical role of c-Cbl-interacting protein of 85 kDa in the development and progression of head and neck squamous cell carcinomas through the ras-ERK pathway.Neoplasia. 2010 Oct;12(10):789-96. doi: 10.1593/neo.10396.
614 The potential of SIRT6 and SIRT7 as circulating markers for head and neck squamous cell carcinoma.Anticancer Res. 2014 Dec;34(12):7137-43.
615 Inter- and intra-tumor heterogeneity of SMAD4 loss in head and neck squamous cell carcinomas.Mol Carcinog. 2019 May;58(5):666-673. doi: 10.1002/mc.22958. Epub 2019 Jan 16.
616 Association of two BRM promoter polymorphisms with head and neck squamous cell carcinoma risk.Carcinogenesis. 2013 May;34(5):1012-7. doi: 10.1093/carcin/bgt008. Epub 2013 Jan 15.
617 Downregulation of SMG-1 in HPV-positive head and neck squamous cell carcinoma due to promoter hypermethylation correlates with improved survival.Clin Cancer Res. 2012 Mar 1;18(5):1257-67. doi: 10.1158/1078-0432.CCR-11-2058. Epub 2012 Jan 13.
618 Regulation of submaxillary gland androgen-regulated protein 3A via estrogen receptor 2 in radioresistant head and neck squamous cell carcinoma cells.J Exp Clin Cancer Res. 2017 Feb 6;36(1):25. doi: 10.1186/s13046-017-0496-2.
619 Inter-observer and segmentation method variability of textural analysis in pre-therapeutic FDG PET/CT in head and neck cancer.PLoS One. 2019 Mar 28;14(3):e0214299. doi: 10.1371/journal.pone.0214299. eCollection 2019.
620 SMURF1 silencing diminishes a CD44-high cancer stem cell-like population in head and neck squamous cell carcinoma.Mol Cancer. 2014 Dec 3;13:260. doi: 10.1186/1476-4598-13-260.
621 Np63/SRC/Slug Signaling Axis Promotes Epithelial-to-Mesenchymal Transition in Squamous Cancers.Clin Cancer Res. 2018 Aug 15;24(16):3917-3927. doi: 10.1158/1078-0432.CCR-17-3775. Epub 2018 May 8.
622 A prognostic mRNA expression signature of four 16q24.3 genes in radio(chemo)therapy-treated head and neck squamous cell carcinoma (HNSCC).Mol Oncol. 2018 Dec;12(12):2085-2101. doi: 10.1002/1878-0261.12388. Epub 2018 Oct 26.
623 p38 MAPK mediates epithelial-mesenchymal transition by regulating p38IP and Snail in head and neck squamous cell carcinoma.Oral Oncol. 2016 Sep;60:81-9. doi: 10.1016/j.oraloncology.2016.06.010. Epub 2016 Jul 15.
624 Genetic variation in Transaldolase 1 and risk of squamous cell carcinoma of the head and neck.Cancer Detect Prev. 2008;32(3):200-8. doi: 10.1016/j.cdp.2008.08.008. Epub 2008 Sep 20.
625 Protein expression and promoter methylation of the candidate biomarker TCF21 in head and neck squamous cell carcinoma.Cell Oncol (Dordr). 2013 Jun;36(3):213-24. doi: 10.1007/s13402-013-0129-5. Epub 2013 Mar 26.
626 Decreased mitochondrial copy numbers in oral squamous cell carcinoma.Head Neck. 2016 Aug;38(8):1170-5. doi: 10.1002/hed.24194. Epub 2016 Apr 15.
627 Gene expression profiles in HPV-infected head and neck cancer.J Pathol. 2007 Nov;213(3):283-93. doi: 10.1002/path.2227.
628 Hypoxia induces TFE3 expression in head and neck squamous cell carcinoma.Oncotarget. 2016 Mar 8;7(10):11651-63. doi: 10.18632/oncotarget.7309.
629 Carboxyl-Terminal Modulator Protein Positively Acts as an Oncogenic Driver in Head and Neck Squamous Cell Carcinoma via Regulating Akt phosphorylation.Sci Rep. 2016 Jun 22;6:28503. doi: 10.1038/srep28503.
630 Impact of HPV infection on gene expression and methylation in oral cancer patients.J Med Microbiol. 2019 Mar;68(3):440-445. doi: 10.1099/jmm.0.000898. Epub 2019 Jan 9.
631 Variants of EVER1 and EVER2 (TMC6 and TMC8) and human papillomavirus status in patients with mucosal squamous cell carcinoma of the head and neck.Cancer Causes Control. 2016 Jun;27(6):809-15. doi: 10.1007/s10552-016-0749-y. Epub 2016 Apr 20.
632 Characterization of the role of TMEM45A in cancer cell sensitivity to cisplatin.Cell Death Dis. 2019 Dec 4;10(12):919. doi: 10.1038/s41419-019-2088-x.
633 Human DESC1 serine protease confers tumorigenic properties to MDCK cells and it is upregulated in tumours of different origin.Br J Cancer. 2007 Jul 16;97(2):201-9. doi: 10.1038/sj.bjc.6603856. Epub 2007 Jun 19.
634 A functional variant at the miR-184 binding site in TNFAIP2 and risk of squamous cell carcinoma of the head and neck.Carcinogenesis. 2011 Nov;32(11):1668-74. doi: 10.1093/carcin/bgr209. Epub 2011 Sep 20.
635 Identification of seven differentially displayed transcripts in human primary and matched metastatic head and neck squamous cell carcinoma cell lines: implications in metastasis and/or radiation response.Oral Oncol. 1997 May;33(3):197-203. doi: 10.1016/s0964-1955(96)00065-6.
636 TRAF4 is potently induced by TAp63 isoforms and localised according to differentiation in SCCHN.Cancer Biol Ther. 2007 Dec;6(12):1986-90. doi: 10.4161/cbt.6.12.5002. Epub 2007 Sep 8.
637 Genomic analysis of head and neck squamous cell carcinoma cell lines and human tumors: a rational approach to preclinical model selection.Mol Cancer Res. 2014 Apr;12(4):571-82. doi: 10.1158/1541-7786.MCR-13-0396. Epub 2014 Jan 14.
638 TRIP13 promotes error-prone nonhomologous end joining and induces chemoresistance in head and neck cancer.Nat Commun. 2014 Jul 31;5:4527. doi: 10.1038/ncomms5527.
639 Midkine promotes tetraspanin-integrin interaction and induces FAK-Stat1alpha pathway contributing to migration/invasiveness of human head and neck squamous cell carcinoma cells.Biochem Biophys Res Commun. 2008 Dec 12;377(2):474-478. doi: 10.1016/j.bbrc.2008.09.138. Epub 2008 Oct 11.
640 POU2F1 activity regulates HOXD10 and HOXD11 promoting a proliferative and invasive phenotype in head and neck cancer.Oncotarget. 2014 Sep 30;5(18):8803-15. doi: 10.18632/oncotarget.2492.
641 Loss of TP63 Promotes the Metastasis of Head and Neck Squamous Cell Carcinoma by Activating MAPK and STAT3 Signaling.Mol Cancer Res. 2019 Jun;17(6):1279-1293. doi: 10.1158/1541-7786.MCR-18-1355. Epub 2019 Mar 25.