General Information of Drug Off-Target (DOT) (ID: OT7PS8O1)

DOT Name Cadherin EGF LAG seven-pass G-type receptor 1 (CELSR1)
Synonyms Cadherin family member 9; Flamingo homolog 2; hFmi2
Gene Name CELSR1
Related Disease
Anencephaly ( )
Cardiac failure ( )
Hepatocellular carcinoma ( )
Lymphatic malformation 1 ( )
Lymphatic malformation 9 ( )
Neural tube defect ( )
Non-insulin dependent diabetes ( )
Pneumocystis pneumonia ( )
Prostate cancer ( )
Chronic obstructive pulmonary disease ( )
Isolated congenital microcephaly ( )
Neural tube defects, susceptibility to ( )
Stroke ( )
Digestive system neoplasm ( )
Ductal breast carcinoma in situ ( )
UniProt ID
CELR1_HUMAN
PDB ID
7SZ8; 8D40
Pfam ID
PF00002 ; PF00028 ; PF00008 ; PF16489 ; PF01825 ; PF02793 ; PF00053 ; PF02210
Sequence
MAPPPPPVLPVLLLLAAAAALPAMGLRAAAWEPRVPGGTRAFALRPGCTYAVGAACTPRA
PRELLDVGRDGRLAGRRRVSGAGRPLPLQVRLVARSAPTALSRRLRARTHLPGCGARARL
CGTGARLCGALCFPVPGGCAAAQHSALAAPTTLPACRCPPRPRPRCPGRPICLPPGGSVR
LRLLCALRRAAGAVRVGLALEAATAGTPSASPSPSPPLPPNLPEARAGPARRARRGTSGR
GSLKFPMPNYQVALFENEPAGTLILQLHAHYTIEGEEERVSYYMEGLFDERSRGYFRIDS
ATGAVSTDSVLDRETKETHVLRVKAVDYSTPPRSATTYITVLVKDTNDHSPVFEQSEYRE
RVRENLEVGYEVLTIRASDRDSPINANLRYRVLGGAWDVFQLNESSGVVSTRAVLDREEA
AEYQLLVEANDQGRNPGPLSATATVYIEVEDENDNYPQFSEQNYVVQVPEDVGLNTAVLR
VQATDRDQGQNAAIHYSILSGNVAGQFYLHSLSGILDVINPLDFEDVQKYSLSIKAQDGG
RPPLINSSGVVSVQVLDVNDNEPIFVSSPFQATVLENVPLGYPVVHIQAVDADSGENARL
HYRLVDTASTFLGGGSAGPKNPAPTPDFPFQIHNSSGWITVCAELDREEVEHYSFGVEAV
DHGSPPMSSSTSVSITVLDVNDNDPVFTQPTYELRLNEDAAVGSSVLTLQARDRDANSVI
TYQLTGGNTRNRFALSSQRGGGLITLALPLDYKQEQQYVLAVTASDGTRSHTAHVLINVT
DANTHRPVFQSSHYTVSVSEDRPVGTSIATLSANDEDTGENARITYVIQDPVPQFRIDPD
SGTMYTMMELDYENQVAYTLTIMAQDNGIPQKSDTTTLEILILDANDNAPQFLWDFYQGS
IFEDAPPSTSILQVSATDRDSGPNGRLLYTFQGGDDGDGDFYIEPTSGVIRTQRRLDREN
VAVYNLWALAVDRGSPTPLSASVEIQVTILDINDNAPMFEKDELELFVEENNPVGSVVAK
IRANDPDEGPNAQIMYQIVEGDMRHFFQLDLLNGDLRAMVELDFEVRREYVLVVQATSAP
LVSRATVHILLVDQNDNPPVLPDFQILFNNYVTNKSNSFPTGVIGCIPAHDPDVSDSLNY
TFVQGNELRLLLLDPATGELQLSRDLDNNRPLEALMEVSVSDGIHSVTAFCTLRVTIITD
DMLTNSITVRLENMSQEKFLSPLLALFVEGVAAVLSTTKDDVFVFNVQNDTDVSSNILNV
TFSALLPGGVRGQFFPSEDLQEQIYLNRTLLTTISTQRVLPFDDNICLREPCENYMKCVS
VLRFDSSAPFLSSTTVLFRPIHPINGLRCRCPPGFTGDYCETEIDLCYSDPCGANGRCRS
REGGYTCECFEDFTGEHCEVDARSGRCANGVCKNGGTCVNLLIGGFHCVCPPGEYERPYC
EVTTRSFPPQSFVTFRGLRQRFHFTISLTFATQERNGLLLYNGRFNEKHDFIALEIVDEQ
VQLTFSAGETTTTVAPKVPSGVSDGRWHSVQVQYYNKPNIGHLGLPHGPSGEKMAVVTVD
DCDTTMAVRFGKDIGNYSCAAQGTQTGSKKSLDLTGPLLLGGVPNLPEDFPVHNRQFVGC
MRNLSVDGKNVDMAGFIANNGTREGCAARRNFCDGRRCQNGGTCVNRWNMYLCECPLRFG
GKNCEQAMPHPQLFSGESVVSWSDLNIIISVPWYLGLMFRTRKEDSVLMEATSGGPTSFR
LQILNNYLQFEVSHGPSDVESVMLSGLRVTDGEWHHLLIELKNVKEDSEMKHLVTMTLDY
GMDQNKADIGGMLPGLTVRSVVVGGASEDKVSVRRGFRGCMQGVRMGGTPTNVATLNMNN
ALKVRVKDGCDVDDPCTSSPCPPNSRCHDAWEDYSCVCDKGYLGINCVDACHLNPCENMG
ACVRSPGSPQGYVCECGPSHYGPYCENKLDLPCPRGWWGNPVCGPCHCAVSKGFDPDCNK
TNGQCQCKENYYKLLAQDTCLPCDCFPHGSHSRTCDMATGQCACKPGVIGRQCNRCDNPF
AEVTTLGCEVIYNGCPKAFEAGIWWPQTKFGQPAAVPCPKGSVGNAVRHCSGEKGWLPPE
LFNCTTISFVDLRAMNEKLSRNETQVDGARALQLVRALRSATQHTGTLFGNDVRTAYQLL
GHVLQHESWQQGFDLAATQDADFHEDVIHSGSALLAPATRAAWEQIQRSEGGTAQLLRRL
EGYFSNVARNVRRTYLRPFVIVTANMILAVDIFDKFNFTGARVPRFDTIHEEFPRELESS
VSFPADFFRPPEEKEGPLLRPAGRRTTPQTTRPGPGTEREAPISRRRRHPDDAGQFAVAL
VIIYRTLGQLLPERYDPDRRSLRLPHRPIINTPMVSTLVYSEGAPLPRPLERPVLVEFAL
LEVEERTKPVCVFWNHSLAVGGTGGWSARGCELLSRNRTHVACQCSHTASFAVLMDISRR
ENGEVLPLKIVTYAAVSLSLAALLVAFVLLSLVRMLRSNLHSIHKHLAVALFLSQLVFVI
GINQTENPFLCTVVAILLHYIYMSTFAWTLVESLHVYRMLTEVRNIDTGPMRFYYVVGWG
IPAIVTGLAVGLDPQGYGNPDFCWLSLQDTLIWSFAGPIGAVIIINTVTSVLSAKVSCQR
KHHYYGKKGIVSLLRTAFLLLLLISATWLLGLLAVNRDALSFHYLFAIFSGLQGPFVLLF
HCVLNQEVRKHLKGVLGGRKLHLEDSATTRATLLTRSLNCNTTFGDGPDMLRTDLGESTA
SLDSIVRDEGIQKLGVSSGLVRGSHGEPDASLMPRSCKDPPGHDSDSDSELSLDEQSSSY
ASSHSSDSEDDGVGAEEKWDPARGAVHSTPKGDAVANHVPAGWPDQSLAESDSEDPSGKP
RLKVETKVSVELHREEQGSHRGEYPPDQESGGAARLASSQPPEQRKGILKNKVTYPPPLT
LTEQTLKGRLREKLADCEQSPTSSRTSSLGSGGPDCAITVKSPGREPGRDHLNGVAMNVR
TGSAQADGSDSEKP
Function Receptor that may have an important role in cell/cell signaling during nervous system formation.

Molecular Interaction Atlas (MIA) of This DOT

15 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Anencephaly DISIYW6T Strong Genetic Variation [1]
Cardiac failure DISDC067 Strong Genetic Variation [2]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [3]
Lymphatic malformation 1 DIS857QZ Strong Biomarker [4]
Lymphatic malformation 9 DIS0VF8U Strong Autosomal dominant [5]
Neural tube defect DIS5J95E Strong Genetic Variation [6]
Non-insulin dependent diabetes DISK1O5Z Strong Genetic Variation [7]
Pneumocystis pneumonia DISFSOM3 Strong Genetic Variation [8]
Prostate cancer DISF190Y Strong Genetic Variation [9]
Chronic obstructive pulmonary disease DISQCIRF moderate Genetic Variation [10]
Isolated congenital microcephaly DISUXHZ6 moderate Genetic Variation [11]
Neural tube defects, susceptibility to DISHA84K Moderate Autosomal dominant [12]
Stroke DISX6UHX moderate Genetic Variation [13]
Digestive system neoplasm DISPOJCT Limited Biomarker [14]
Ductal breast carcinoma in situ DISLCJY7 Limited Biomarker [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Cadherin EGF LAG seven-pass G-type receptor 1 (CELSR1). [16]
Fulvestrant DM0YZC6 Approved Fulvestrant increases the methylation of Cadherin EGF LAG seven-pass G-type receptor 1 (CELSR1). [22]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Cadherin EGF LAG seven-pass G-type receptor 1 (CELSR1). [24]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Cadherin EGF LAG seven-pass G-type receptor 1 (CELSR1). [22]
------------------------------------------------------------------------------------
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Cadherin EGF LAG seven-pass G-type receptor 1 (CELSR1). [17]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Cadherin EGF LAG seven-pass G-type receptor 1 (CELSR1). [18]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Cadherin EGF LAG seven-pass G-type receptor 1 (CELSR1). [19]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Cadherin EGF LAG seven-pass G-type receptor 1 (CELSR1). [20]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Cadherin EGF LAG seven-pass G-type receptor 1 (CELSR1). [21]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Cadherin EGF LAG seven-pass G-type receptor 1 (CELSR1). [23]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Cadherin EGF LAG seven-pass G-type receptor 1 (CELSR1). [25]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Cadherin EGF LAG seven-pass G-type receptor 1 (CELSR1). [26]
Manganese DMKT129 Investigative Manganese increases the expression of Cadherin EGF LAG seven-pass G-type receptor 1 (CELSR1). [27]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)

References

1 Digenic variants of planar cell polarity genes in human neural tube defect patients.Mol Genet Metab. 2018 May;124(1):94-100. doi: 10.1016/j.ymgme.2018.03.005. Epub 2018 Mar 18.
2 Genetics of heart rate in heart failure patients (GenHRate).Hum Genomics. 2019 May 21;13(1):22. doi: 10.1186/s40246-019-0206-6.
3 Distinct DNA methylation patterns in cirrhotic liver and hepatocellular carcinoma.Int J Cancer. 2012 Mar 15;130(6):1319-28. doi: 10.1002/ijc.26136. Epub 2011 Jul 21.
4 Increasing evidence of hereditary lymphedema caused by CELSR1 loss-of-function variants.Am J Med Genet A. 2019 Sep;179(9):1718-1724. doi: 10.1002/ajmg.a.61269. Epub 2019 Jun 18.
5 A novel mutation in CELSR1 is associated with hereditary lymphedema. Vasc Cell. 2016 Feb 5;8:1. doi: 10.1186/s13221-016-0035-5. eCollection 2016.
6 Genetic analysis of Wnt/PCP genes in neural tube defects.BMC Med Genomics. 2018 Apr 4;11(1):38. doi: 10.1186/s12920-018-0355-9.
7 Genetic Variants in HSD17B3, SMAD3, and IPO11 Impact Circulating Lipids in Response to Fenofibrate in Individuals With Type 2 Diabetes.Clin Pharmacol Ther. 2018 Apr;103(4):712-721. doi: 10.1002/cpt.798. Epub 2017 Nov 3.
8 Spina bifida-predisposing heterozygous mutations in Planar Cell Polarity genes and Zic2 reduce bone mass in young mice.Sci Rep. 2018 Feb 20;8(1):3325. doi: 10.1038/s41598-018-21718-x.
9 A genome-wide association study of prostate cancer in West African men.Hum Genet. 2014 May;133(5):509-21. doi: 10.1007/s00439-013-1387-z. Epub 2013 Nov 2.
10 Sex-Based Genetic Association Study Identifies CELSR1 as a Possible Chronic Obstructive Pulmonary Disease Risk Locus among Women.Am J Respir Cell Mol Biol. 2017 Mar;56(3):332-341. doi: 10.1165/rcmb.2016-0172OC.
11 Neural progenitor fate decision defects, cortical hypoplasia and behavioral impairment in Celsr1-deficient mice.Mol Psychiatry. 2018 Mar;23(3):723-734. doi: 10.1038/mp.2017.236. Epub 2017 Dec 19.
12 Mutations in the planar cell polarity genes CELSR1 and SCRIB are associated with the severe neural tube defect craniorachischisis. Hum Mutat. 2012 Feb;33(2):440-7. doi: 10.1002/humu.21662. Epub 2011 Dec 20.
13 Replication of the CELSR1 association with ischemic stroke in a Portuguese case-control cohort.Atherosclerosis. 2011 Jul;217(1):260-2. doi: 10.1016/j.atherosclerosis.2011.03.022. Epub 2011 Mar 29.
14 Comparative integromics on non-canonical WNT or planar cell polarity signaling molecules: transcriptional mechanism of PTK7 in colorectal cancer and that of SEMA6A in undifferentiated ES cells.Int J Mol Med. 2007 Sep;20(3):405-9.
15 Validation of an oligo-gene signature for the prognostic stratification of ductal carcinoma in situ (DCIS).Breast Cancer Res Treat. 2016 Jun;157(3):447-59. doi: 10.1007/s10549-016-3838-4. Epub 2016 Jun 1.
16 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
17 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
18 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
19 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
20 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
21 Identification of vitamin D3 target genes in human breast cancer tissue. J Steroid Biochem Mol Biol. 2016 Nov;164:90-97.
22 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
23 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
24 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
25 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
26 Cellular reactions to long-term volatile organic compound (VOC) exposures. Sci Rep. 2016 Dec 1;6:37842. doi: 10.1038/srep37842.
27 Gene expression profiling of human primary astrocytes exposed to manganese chloride indicates selective effects on several functions of the cells. Neurotoxicology. 2007 May;28(3):478-89.