General Information of Drug Off-Target (DOT) (ID: OT9C4PZ4)

DOT Name Claudin-4 (CLDN4)
Synonyms Clostridium perfringens enterotoxin receptor; CPE-R; CPE-receptor; Williams-Beuren syndrome chromosomal region 8 protein
Gene Name CLDN4
UniProt ID
CLD4_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5B2G; 7KP4; 7TDM; 7TDN; 8U4V; 8U5B
Pfam ID
PF00822
Sequence
MASMGLQVMGIALAVLGWLAVMLCCALPMWRVTAFIGSNIVTSQTIWEGLWMNCVVQSTG
QMQCKVYDSLLALPQDLQAARALVIISIIVAALGVLLSVVGGKCTNCLEDESAKAKTMIV
AGVVFLLAGLMVIVPVSWTAHNIIQDFYNPLVASGQKREMGASLYVGWAASGLLLLGGGL
LCCNCPPRTDKPYSAKYSAARSAAASNYV
Function
Channel-forming tight junction protein that mediates paracellular chloride transport in the kidney. Plays a critical role in the paracellular reabsorption of filtered chloride in the kidney collecting ducts. Claudins play a major role in tight junction-specific obliteration of the intercellular space, through calcium-independent cell-adhesion activity.
KEGG Pathway
Cell adhesion molecules (hsa04514 )
Tight junction (hsa04530 )
Leukocyte transendothelial migration (hsa04670 )
Pathogenic Escherichia coli infection (hsa05130 )
Hepatitis C (hsa05160 )
Reactome Pathway
Tight junction interactions (R-HSA-420029 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Regulation of Drug Effects of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Cisplatin DMRHGI9 Approved Claudin-4 (CLDN4) increases the import of Cisplatin. [31]
------------------------------------------------------------------------------------
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Arsenic trioxide DM61TA4 Approved Claudin-4 (CLDN4) decreases the response to substance of Arsenic trioxide. [32]
------------------------------------------------------------------------------------
32 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Claudin-4 (CLDN4). [1]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Claudin-4 (CLDN4). [2]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Claudin-4 (CLDN4). [3]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Claudin-4 (CLDN4). [4]
Arsenic DMTL2Y1 Approved Arsenic increases the expression of Claudin-4 (CLDN4). [5]
Quercetin DM3NC4M Approved Quercetin increases the expression of Claudin-4 (CLDN4). [6]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Claudin-4 (CLDN4). [7]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Claudin-4 (CLDN4). [8]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Claudin-4 (CLDN4). [9]
Marinol DM70IK5 Approved Marinol decreases the expression of Claudin-4 (CLDN4). [10]
Selenium DM25CGV Approved Selenium increases the expression of Claudin-4 (CLDN4). [11]
Progesterone DMUY35B Approved Progesterone decreases the expression of Claudin-4 (CLDN4). [12]
Fluorouracil DMUM7HZ Approved Fluorouracil decreases the expression of Claudin-4 (CLDN4). [13]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Claudin-4 (CLDN4). [14]
Cannabidiol DM0659E Approved Cannabidiol increases the expression of Claudin-4 (CLDN4). [15]
Troglitazone DM3VFPD Approved Troglitazone increases the expression of Claudin-4 (CLDN4). [16]
Sanguinarine DMDINFS Approved Sanguinarine decreases the expression of Claudin-4 (CLDN4). [17]
Leuprorelin acetate DM15HAT Approved Leuprorelin acetate decreases the expression of Claudin-4 (CLDN4). [8]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Claudin-4 (CLDN4). [18]
Fenretinide DMRD5SP Phase 3 Fenretinide increases the expression of Claudin-4 (CLDN4). [19]
Coprexa DMA0WEK Phase 3 Coprexa decreases the expression of Claudin-4 (CLDN4). [20]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Claudin-4 (CLDN4). [4]
phorbol 12-myristate 13-acetate DMJWD62 Phase 2 phorbol 12-myristate 13-acetate increases the expression of Claudin-4 (CLDN4). [21]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Claudin-4 (CLDN4). [4]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Claudin-4 (CLDN4). [23]
Coumarin DM0N8ZM Investigative Coumarin decreases the expression of Claudin-4 (CLDN4). [24]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Claudin-4 (CLDN4). [25]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A decreases the expression of Claudin-4 (CLDN4). [26]
QUERCITRIN DM1DH96 Investigative QUERCITRIN affects the expression of Claudin-4 (CLDN4). [27]
Okadaic acid DM47CO1 Investigative Okadaic acid increases the expression of Claudin-4 (CLDN4). [28]
CH-223191 DMMJZYC Investigative CH-223191 decreases the expression of Claudin-4 (CLDN4). [29]
U0126 DM31OGF Investigative U0126 increases the expression of Claudin-4 (CLDN4). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 32 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Claudin-4 (CLDN4). [22]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
PATULIN DM0RV9C Investigative PATULIN affects the localization of Claudin-4 (CLDN4). [30]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
4 Convergent transcriptional profiles induced by endogenous estrogen and distinct xenoestrogens in breast cancer cells. Carcinogenesis. 2006 Aug;27(8):1567-78.
5 Arsenic compromises conducting airway epithelial barrier properties in primary mouse and immortalized human cell cultures. PLoS One. 2013 Dec 6;8(12):e82970. doi: 10.1371/journal.pone.0082970. eCollection 2013.
6 Quercetin enhances epithelial barrier function and increases claudin-4 expression in Caco-2 cells. J Nutr. 2008 Jun;138(6):1067-73. doi: 10.1093/jn/138.6.1067.
7 Identification of vitamin D3 target genes in human breast cancer tissue. J Steroid Biochem Mol Biol. 2016 Nov;164:90-97.
8 Testosterone regulates tight junction proteins and influences prostatic autoimmune responses. Horm Cancer. 2011 Jun;2(3):145-56. doi: 10.1007/s12672-010-0063-1.
9 Functional gene expression profile underlying methotrexate-induced senescence in human colon cancer cells. Tumour Biol. 2011 Oct;32(5):965-76.
10 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
11 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
12 Gene expression in endometrial cancer cells (Ishikawa) after short time high dose exposure to progesterone. Steroids. 2008 Jan;73(1):116-28.
13 Dissecting progressive stages of 5-fluorouracil resistance in vitro using RNA expression profiling. Int J Cancer. 2004 Nov 1;112(2):200-12. doi: 10.1002/ijc.20401.
14 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
15 Cannabidiol induces osteoblast differentiation via angiopoietin1 and p38 MAPK. Environ Toxicol. 2020 Dec;35(12):1318-1325. doi: 10.1002/tox.22996. Epub 2020 Jul 13.
16 Troglitazone increases expression of E-cadherin and claudin 4 in human pancreatic cancer cells. Biochem Biophys Res Commun. 2009 Mar 13;380(3):614-9. doi: 10.1016/j.bbrc.2009.01.134. Epub 2009 Jan 27.
17 Anti-invasive activity of sanguinarine through modulation of tight junctions and matrix metalloproteinase activities in MDA-MB-231 human breast carcinoma cells. Chem Biol Interact. 2009 May 15;179(2-3):185-91. doi: 10.1016/j.cbi.2008.11.009. Epub 2008 Nov 21.
18 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
19 Regulation of lipocalin-2 gene by the cancer chemopreventive retinoid 4-HPR. Int J Cancer. 2006 Oct 1;119(7):1599-606.
20 Copper deprivation enhances the chemosensitivity of pancreatic cancer to rapamycin by mTORC1/2 inhibition. Chem Biol Interact. 2023 Sep 1;382:110546. doi: 10.1016/j.cbi.2023.110546. Epub 2023 Jun 7.
21 Defective TPA signalling compromises HaCat cells as a human in vitro skin carcinogenesis model. Toxicol In Vitro. 2010 Apr;24(3):910-5. doi: 10.1016/j.tiv.2009.11.017. Epub 2009 Nov 27.
22 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
23 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
24 A synthetic coumarin derivative (4-flourophenylacetamide-acetyl coumarin) impedes cell cycle at G0/G1 stage, induces apoptosis, and inhibits metastasis via ROS-mediated p53 and AKT signaling pathways in A549 cells. J Biochem Mol Toxicol. 2020 Oct;34(10):e22553. doi: 10.1002/jbt.22553. Epub 2020 Jun 24.
25 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
26 Mycotoxins modify the barrier function of Caco-2 cells through differential gene expression of specific claudin isoforms: Protective effect of illite mineral clay. Toxicology. 2016 Apr 15;353-354:21-33. doi: 10.1016/j.tox.2016.05.003. Epub 2016 May 3.
27 Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer. Arch Med Res. 2014 Aug;45(6):445-54.
28 The marine biotoxin okadaic acid affects intestinal tight junction proteins in human intestinal cells. Toxicol In Vitro. 2019 Aug;58:150-160. doi: 10.1016/j.tiv.2019.03.033. Epub 2019 Mar 26.
29 Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands. Toxicol Lett. 2018 Aug;292:162-174.
30 The mycotoxin patulin, modulates tight junctions in caco-2 cells. Toxicol In Vitro. 2009 Feb;23(1):83-9. doi: 10.1016/j.tiv.2008.10.009. Epub 2008 Oct 29.
31 Claudin-3 and claudin-4 regulate sensitivity to cisplatin by controlling expression of the copper and cisplatin influx transporter CTR1. Mol Pharmacol. 2013 Jan;83(1):85-94. doi: 10.1124/mol.112.079798. Epub 2012 Oct 10.
32 The NRF2-mediated oxidative stress response pathway is associated with tumor cell resistance to arsenic trioxide across the NCI-60 panel. BMC Med Genomics. 2010 Aug 13;3:37. doi: 10.1186/1755-8794-3-37.