General Information of Drug Off-Target (DOT) (ID: OTBEHD89)

DOT Name Cochlin (COCH)
Synonyms COCH-5B2
Gene Name COCH
Related Disease
Nonsyndromic genetic hearing loss ( )
Autosomal dominant nonsyndromic hearing loss 13 ( )
Autosomal dominant nonsyndromic hearing loss 9 ( )
Autosomal recessive nonsyndromic hearing loss 2 ( )
Hearing loss, autosomal recessive 110 ( )
Meniere disease ( )
Recessive dystrophic epidermolysis bullosa ( )
Von willebrand disease ( )
Inner ear disease ( )
Autosomal dominant nonsyndromic hearing loss ( )
Glaucoma/ocular hypertension ( )
UniProt ID
COCH_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1JBI
Pfam ID
PF03815 ; PF00092
Sequence
MSAAWIPALGLGVCLLLLPGPAGSEGAAPIAITCFTRGLDIRKEKADVLCPGGCPLEEFS
VYGNIVYASVSSICGAAVHRGVISNSGGPVRVYSLPGRENYSSVDANGIQSQMLSRWSAS
FTVTKGKSSTQEATGQAVSTAHPPTGKRLKKTPEKKTGNKDCKADIAFLIDGSFNIGQRR
FNLQKNFVGKVALMLGIGTEGPHVGLVQASEHPKIEFYLKNFTSAKDVLFAIKEVGFRGG
NSNTGKALKHTAQKFFTVDAGVRKGIPKVVVVFIDGWPSDDIEEAGIVAREFGVNVFIVS
VAKPIPEELGMVQDVTFVDKAVCRNNGFFSYHMPNWFGTTKYVKPLVQKLCTHEQMMCSK
TCYNSVNIAFLIDGSSSVGDSNFRLMLEFVSNIAKTFEISDIGAKIAAVQFTYDQRTEFS
FTDYSTKENVLAVIRNIRYMSGGTATGDAISFTVRNVFGPIRESPNKNFLVIVTDGQSYD
DVQGPAAAAHDAGITIFSVGVAWAPLDDLKDMASKPKESHAFFTREFTGLEPIVSDVIRG
ICRDFLESQQ
Function Plays a role in the control of cell shape and motility in the trabecular meshwork.
Tissue Specificity Expressed in inner ear structures; the cochlea and the vestibule.

Molecular Interaction Atlas (MIA) of This DOT

11 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Nonsyndromic genetic hearing loss DISZX61P Definitive Autosomal dominant [1]
Autosomal dominant nonsyndromic hearing loss 13 DISFLETQ Strong Genetic Variation [2]
Autosomal dominant nonsyndromic hearing loss 9 DISD5HDW Strong Autosomal dominant [3]
Autosomal recessive nonsyndromic hearing loss 2 DIS1P51S Strong Genetic Variation [2]
Hearing loss, autosomal recessive 110 DISPP7H7 Strong Autosomal recessive [4]
Meniere disease DISC5R5F Strong Genetic Variation [5]
Recessive dystrophic epidermolysis bullosa DISVOPLZ Strong Genetic Variation [6]
Von willebrand disease DIS3TZCH Strong Genetic Variation [7]
Inner ear disease DISI6MRP moderate Genetic Variation [8]
Autosomal dominant nonsyndromic hearing loss DISYC1G0 Supportive Autosomal dominant [9]
Glaucoma/ocular hypertension DISLBXBY Limited Biomarker [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 4 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Fluorouracil DMUM7HZ Approved Cochlin (COCH) affects the response to substance of Fluorouracil. [28]
Mitomycin DMH0ZJE Approved Cochlin (COCH) affects the response to substance of Mitomycin. [28]
Mitoxantrone DMM39BF Approved Cochlin (COCH) affects the response to substance of Mitoxantrone. [28]
Cyclophosphamide DM4O2Z7 Approved Cochlin (COCH) affects the response to substance of Cyclophosphamide. [28]
------------------------------------------------------------------------------------
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Cochlin (COCH). [11]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Cochlin (COCH). [12]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Cochlin (COCH). [13]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Cochlin (COCH). [14]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Cochlin (COCH). [15]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Cochlin (COCH). [16]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Cochlin (COCH). [17]
Isotretinoin DM4QTBN Approved Isotretinoin increases the expression of Cochlin (COCH). [18]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the expression of Cochlin (COCH). [19]
Cidofovir DMA13GD Approved Cidofovir increases the expression of Cochlin (COCH). [19]
Ibuprofen DM8VCBE Approved Ibuprofen decreases the expression of Cochlin (COCH). [19]
Adefovir dipivoxil DMMAWY1 Approved Adefovir dipivoxil increases the expression of Cochlin (COCH). [19]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of Cochlin (COCH). [20]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Cochlin (COCH). [22]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Cochlin (COCH). [23]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Cochlin (COCH). [24]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Cochlin (COCH). [25]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A increases the expression of Cochlin (COCH). [26]
GALLICACID DM6Y3A0 Investigative GALLICACID increases the expression of Cochlin (COCH). [27]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Cochlin (COCH). [21]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Hereditary deafness and phenotyping in humans.Br Med Bull. 2002;63:73-94. doi: 10.1093/bmb/63.1.73.
3 High prevalence of symptoms of Menire's disease in three families with a mutation in the COCH gene. Hum Mol Genet. 1999 Aug;8(8):1425-9. doi: 10.1093/hmg/8.8.1425.
4 Hearing and vestibular deficits in the Coch(-/-) null mouse model: comparison to the Coch(G88E/G88E) mouse and to DFNA9 hearing and balance disorder. Hear Res. 2011 Feb;272(1-2):42-8. doi: 10.1016/j.heares.2010.11.002. Epub 2010 Nov 10.
5 Distinct vestibular phenotypes in DFNA9 families with COCH variants.Eur Arch Otorhinolaryngol. 2016 Oct;273(10):2993-3002. doi: 10.1007/s00405-015-3885-1. Epub 2016 Jan 13.
6 Impaired lymphoid extracellular matrix impedes antibacterial immunity in epidermolysis bullosa.Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):E705-E714. doi: 10.1073/pnas.1709111115. Epub 2018 Jan 5.
7 The second von Willebrand type A domain of cochlin has high affinity for type I, type II and type IV collagens.FEBS Lett. 2008 Dec 10;582(29):4003-7. doi: 10.1016/j.febslet.2008.10.050. Epub 2008 Nov 12.
8 Histopathology of the Human Inner Ear in the p.L114P COCH Mutation (DFNA9).Audiol Neurootol. 2016;21(2):88-97. doi: 10.1159/000443822. Epub 2016 Mar 30.
9 Genetic Hearing Loss Overview. 1999 Feb 14 [updated 2023 Sep 28]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
10 Cochlin in the eye: functional implications.Prog Retin Eye Res. 2007 Sep;26(5):453-69. doi: 10.1016/j.preteyeres.2007.06.002. Epub 2007 Jun 22.
11 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
12 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
13 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
14 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
15 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
16 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
17 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
18 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
19 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
20 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
21 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
22 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
23 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
24 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
25 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
26 Linking site-specific loss of histone acetylation to repression of gene expression by the mycotoxin ochratoxin A. Arch Toxicol. 2018 Feb;92(2):995-1014.
27 Gene expression profile analysis of gallic acid-induced cell death process. Sci Rep. 2021 Aug 18;11(1):16743. doi: 10.1038/s41598-021-96174-1.
28 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.