General Information of Drug Off-Target (DOT) (ID: OTC0TXEP)

DOT Name Transforming growth factor beta-2 proprotein (TGFB2)
Synonyms Cetermin; Glioblastoma-derived T-cell suppressor factor; G-TSF
Gene Name TGFB2
Related Disease
Familial thoracic aortic aneurysm and aortic dissection ( )
Loeys-Dietz syndrome 4 ( )
UniProt ID
TGFB2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1TFG; 2TGI; 4KXZ; 5TX4; 5TY4; 6I9J; 6XM2; 7RCO; 8DC0; 8FXS; 8FXV
Pfam ID
PF00019 ; PF00688
Sequence
MHYCVLSAFLILHLVTVALSLSTCSTLDMDQFMRKRIEAIRGQILSKLKLTSPPEDYPEP
EEVPPEVISIYNSTRDLLQEKASRRAAACERERSDEEYYAKEVYKIDMPPFFPSENAIPP
TFYRPYFRIVRFDVSAMEKNASNLVKAEFRVFRLQNPKARVPEQRIELYQILKSKDLTSP
TQRYIDSKVVKTRAEGEWLSFDVTDAVHEWLHHKDRNLGFKISLHCPCCTFVPSNNYIIP
NKSEELEARFAGIDGTSTYTSGDQKTIKSTRKKNSGKTPHLLLMLLPSYRLESQQTNRRK
KRALDAAYCFRNVQDNCCLRPLYIDFKRDLGWKWIHEPKGYNANFCAGACPYLWSSDTQH
SRVLSLYNTINPEASASPCCVSQDLEPLTILYYIGKTPKIEQLSNMIVKSCKCS
Function
[Transforming growth factor beta-2 proprotein]: Precursor of the Latency-associated peptide (LAP) and Transforming growth factor beta-2 (TGF-beta-2) chains, which constitute the regulatory and active subunit of TGF-beta-2, respectively; [Latency-associated peptide]: Required to maintain the Transforming growth factor beta-2 (TGF-beta-2) chain in a latent state during storage in extracellular matrix. Associates non-covalently with TGF-beta-2 and regulates its activation via interaction with 'milieu molecules', such as LTBP1 and LRRC32/GARP, that control activation of TGF-beta-2; [Transforming growth factor beta-2]: Multifunctional protein that regulates various processes such as angiogenesis and heart development. Activation into mature form follows different steps: following cleavage of the proprotein in the Golgi apparatus, Latency-associated peptide (LAP) and Transforming growth factor beta-2 (TGF-beta-2) chains remain non-covalently linked rendering TGF-beta-2 inactive during storage in extracellular matrix. At the same time, LAP chain interacts with 'milieu molecules', such as LTBP1 and LRRC32/GARP, that control activation of TGF-beta-2 and maintain it in a latent state during storage in extracellular milieus. Once activated following release of LAP, TGF-beta-2 acts by binding to TGF-beta receptors (TGFBR1 and TGFBR2), which transduce signal.
KEGG Pathway
MAPK sig.ling pathway (hsa04010 )
Cytokine-cytokine receptor interaction (hsa04060 )
FoxO sig.ling pathway (hsa04068 )
Cell cycle (hsa04110 )
Cellular senescence (hsa04218 )
TGF-beta sig.ling pathway (hsa04350 )
Osteoclast differentiation (hsa04380 )
Hippo sig.ling pathway (hsa04390 )
AGE-RAGE sig.ling pathway in diabetic complications (hsa04933 )
Leishmaniasis (hsa05140 )
Chagas disease (hsa05142 )
Malaria (hsa05144 )
Toxoplasmosis (hsa05145 )
Amoebiasis (hsa05146 )
Tuberculosis (hsa05152 )
Hepatitis B (hsa05161 )
Human T-cell leukemia virus 1 infection (hsa05166 )
Pathways in cancer (hsa05200 )
Proteoglycans in cancer (hsa05205 )
MicroR.s in cancer (hsa05206 )
Colorectal cancer (hsa05210 )
Re.l cell carcinoma (hsa05211 )
Pancreatic cancer (hsa05212 )
Chronic myeloid leukemia (hsa05220 )
Hepatocellular carcinoma (hsa05225 )
Gastric cancer (hsa05226 )
Inflammatory bowel disease (hsa05321 )
Rheumatoid arthritis (hsa05323 )
Hypertrophic cardiomyopathy (hsa05410 )
Dilated cardiomyopathy (hsa05414 )
Diabetic cardiomyopathy (hsa05415 )
Reactome Pathway
Molecules associated with elastic fibres (R-HSA-2129379 )
TGF-beta receptor signaling activates SMADs (R-HSA-2173789 )
ECM proteoglycans (R-HSA-3000178 )
Platelet degranulation (R-HSA-114608 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Familial thoracic aortic aneurysm and aortic dissection DIS069FB Definitive Autosomal dominant [1]
Loeys-Dietz syndrome 4 DISG09TJ Definitive Autosomal dominant [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Fluorouracil DMUM7HZ Approved Transforming growth factor beta-2 proprotein (TGFB2) affects the response to substance of Fluorouracil. [38]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Transforming growth factor beta-2 proprotein (TGFB2). [3]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Transforming growth factor beta-2 proprotein (TGFB2). [28]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Transforming growth factor beta-2 proprotein (TGFB2). [30]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Transforming growth factor beta-2 proprotein (TGFB2). [34]
------------------------------------------------------------------------------------
32 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [4]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [5]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [6]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [7]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [8]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [9]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [10]
Testosterone DM7HUNW Approved Testosterone increases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [11]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [12]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [13]
Dexamethasone DMMWZET Approved Dexamethasone decreases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [14]
Diclofenac DMPIHLS Approved Diclofenac decreases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [16]
Dasatinib DMJV2EK Approved Dasatinib increases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [17]
Ethinyl estradiol DMODJ40 Approved Ethinyl estradiol decreases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [18]
Gemcitabine DMSE3I7 Approved Gemcitabine increases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [19]
Obeticholic acid DM3Q1SM Approved Obeticholic acid decreases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [20]
Acocantherin DM7JT24 Approved Acocantherin decreases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [21]
Adenosine DMM2NSK Approved Adenosine increases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [22]
Sodium chloride DMM3950 Approved Sodium chloride increases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [23]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [24]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [25]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [8]
Belinostat DM6OC53 Phase 2 Belinostat increases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [27]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [29]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [31]
Geldanamycin DMS7TC5 Discontinued in Phase 2 Geldanamycin increases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [32]
Torcetrapib DMDHYM7 Discontinued in Phase 2 Torcetrapib increases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [33]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [35]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [36]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A increases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [37]
Paraquat DMR8O3X Investigative Paraquat affects the expression of Transforming growth factor beta-2 proprotein (TGFB2). [12]
Cordycepin DM72Y01 Investigative Cordycepin increases the expression of Transforming growth factor beta-2 proprotein (TGFB2). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 32 Drug(s)
2 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Troglitazone DM3VFPD Approved Troglitazone decreases the response to substance of Transforming growth factor beta-2 proprotein (TGFB2). [15]
Tamibarotene DM3G74J Phase 3 Tamibarotene increases the secretion of Transforming growth factor beta-2 proprotein (TGFB2). [26]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Flexible and scalable diagnostic filtering of genomic variants using G2P with Ensembl VEP. Nat Commun. 2019 May 30;10(1):2373. doi: 10.1038/s41467-019-10016-3.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
5 Towards dissecting the pathogenesis of retinoid-induced hair loss: all-trans retinoic acid induces premature hair follicle regression (catagen) by upregulation of transforming growth factor-beta2 in the dermal papilla. J Invest Dermatol. 2005 Jun;124(6):1119-26. doi: 10.1111/j.0022-202X.2005.23686.x.
6 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
7 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
8 Convergent transcriptional profiles induced by endogenous estrogen and distinct xenoestrogens in breast cancer cells. Carcinogenesis. 2006 Aug;27(8):1567-78.
9 TGF-1 signaling protects retinal ganglion cells from oxidative stress via modulation of the HO-1/Nrf2 pathway. Chem Biol Interact. 2020 Nov 1;331:109249. doi: 10.1016/j.cbi.2020.109249. Epub 2020 Sep 24.
10 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
11 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
12 Primary Human Hepatocyte Spheroids as Tools to Study the Hepatotoxic Potential of Non-Pharmaceutical Chemicals. Int J Mol Sci. 2021 Oct 12;22(20):11005. doi: 10.3390/ijms222011005.
13 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
14 Role of endogenous TGF-beta in glucocorticoid-induced lung type II cell differentiation. Am J Physiol Lung Cell Mol Physiol. 2007 Jan;292(1):L249-57. doi: 10.1152/ajplung.00088.2006. Epub 2006 Sep 22.
15 Troglitazone suppresses transforming growth factor beta-mediated fibrogenesis in retinal pigment epithelial cells. Mol Vis. 2008 Jan 18;14:95-104.
16 Gene expression profiling of rheumatoid arthritis synovial cells treated with antirheumatic drugs. J Biomol Screen. 2007 Apr;12(3):328-40. doi: 10.1177/1087057107299261. Epub 2007 Mar 22.
17 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
18 The genomic response of a human uterine endometrial adenocarcinoma cell line to 17alpha-ethynyl estradiol. Toxicol Sci. 2009 Jan;107(1):40-55.
19 Gene expression profiling of breast cancer cells in response to gemcitabine: NF-kappaB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat. 2007 Apr;102(2):157-72.
20 Pharmacotoxicology of clinically-relevant concentrations of obeticholic acid in an organotypic human hepatocyte system. Toxicol In Vitro. 2017 Mar;39:93-103.
21 Ouabain impairs cell migration, and invasion and alters gene expression of human osteosarcoma U-2 OS cells. Environ Toxicol. 2017 Nov;32(11):2400-2413. doi: 10.1002/tox.22453. Epub 2017 Aug 10.
22 Adenosine and Cordycepin Accelerate Tissue Remodeling Process through Adenosine Receptor Mediated Wnt/-Catenin Pathway Stimulation by Regulating GSK3b Activity. Int J Mol Sci. 2021 May 25;22(11):5571. doi: 10.3390/ijms22115571.
23 Osmotic Induction of Angiogenic Growth Factor Expression in Human Retinal Pigment Epithelial Cells. PLoS One. 2016 Jan 22;11(1):e0147312. doi: 10.1371/journal.pone.0147312. eCollection 2016.
24 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
25 Gene expression profiling in Ishikawa cells: a fingerprint for estrogen active compounds. Toxicol Appl Pharmacol. 2009 Apr 1;236(1):85-96.
26 RARalpha is a regulatory factor for Am-80-induced cell growth inhibition of hematologic malignant cells. Int J Oncol. 2007 Aug;31(2):397-404.
27 Histone acetylation-mediated regulation of the Hippo pathway. PLoS One. 2013 May 6;8(5):e62478. doi: 10.1371/journal.pone.0062478. Print 2013.
28 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
29 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
30 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
31 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
32 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
33 Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol. 2012 Dec 10;6:152.
34 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
35 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
36 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
37 Inhibition of CXCL12-mediated chemotaxis of Jurkat cells by direct immunotoxicants. Arch Toxicol. 2016 Jul;90(7):1685-94. doi: 10.1007/s00204-015-1585-7. Epub 2015 Aug 28.
38 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.