General Information of Drug Off-Target (DOT) (ID: OTDWEI6C)

DOT Name Ferrochelatase, mitochondrial (FECH)
Synonyms EC 4.98.1.1; Heme synthase; Protoheme ferro-lyase
Gene Name FECH
Related Disease
Protoporphyria, erythropoietic, 1 ( )
Autosomal erythropoietic protoporphyria ( )
UniProt ID
HEMH_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1HRK; 2HRC; 2HRE; 2PNJ; 2PO5; 2PO7; 2QD1; 2QD2; 2QD3; 2QD4; 2QD5; 3AQI; 3HCN; 3HCO; 3HCP; 3HCR; 3W1W; 4F4D; 4KLA; 4KLC; 4KLR; 4KMM; 4MK4; 7CT7; 7CTC
EC Number
4.98.1.1
Pfam ID
PF00762
Sequence
MRSLGANMAAALRAAGVLLRDPLASSSWRVCQPWRWKSGAAAAAVTTETAQHAQGAKPQV
QPQKRKPKTGILMLNMGGPETLGDVHDFLLRLFLDRDLMTLPIQNKLAPFIAKRRTPKIQ
EQYRRIGGGSPIKIWTSKQGEGMVKLLDELSPNTAPHKYYIGFRYVHPLTEEAIEEMERD
GLERAIAFTQYPQYSCSTTGSSLNAIYRYYNQVGRKPTMKWSTIDRWPTHHLLIQCFADH
ILKELDHFPLEKRSEVVILFSAHSLPMSVVNRGDPYPQEVSATVQKVMERLEYCNPYRLV
WQSKVGPMPWLGPQTDESIKGLCERGRKNILLVPIAFTSDHIETLYELDIEYSQVLAKEC
GVENIRRAESLNGNPLFSKALADLVHSHIQSNELCSKQLTLSCPLCVNPVCRETKSFFTS
QQL
Function Catalyzes the ferrous insertion into protoporphyrin IX.
KEGG Pathway
Porphyrin metabolism (hsa00860 )
Metabolic pathways (hsa01100 )
Biosynthesis of cofactors (hsa01240 )
Reactome Pathway
Heme biosynthesis (R-HSA-189451 )
BioCyc Pathway
MetaCyc:HS00891-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Protoporphyria, erythropoietic, 1 DIS6PGXC Definitive Autosomal recessive [1]
Autosomal erythropoietic protoporphyria DISFG29C Supportive Autosomal dominant [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
31 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Ferrochelatase, mitochondrial (FECH). [3]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Ferrochelatase, mitochondrial (FECH). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Ferrochelatase, mitochondrial (FECH). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Ferrochelatase, mitochondrial (FECH). [6]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Ferrochelatase, mitochondrial (FECH). [7]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Ferrochelatase, mitochondrial (FECH). [8]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide decreases the expression of Ferrochelatase, mitochondrial (FECH). [9]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Ferrochelatase, mitochondrial (FECH). [10]
Selenium DM25CGV Approved Selenium decreases the expression of Ferrochelatase, mitochondrial (FECH). [11]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate increases the expression of Ferrochelatase, mitochondrial (FECH). [12]
Cidofovir DMA13GD Approved Cidofovir decreases the expression of Ferrochelatase, mitochondrial (FECH). [7]
Ifosfamide DMCT3I8 Approved Ifosfamide decreases the expression of Ferrochelatase, mitochondrial (FECH). [7]
Clodronate DM9Y6X7 Approved Clodronate decreases the expression of Ferrochelatase, mitochondrial (FECH). [7]
Isoniazid DM5JVS3 Approved Isoniazid decreases the expression of Ferrochelatase, mitochondrial (FECH). [13]
Benzoic acid DMKB9FI Approved Benzoic acid increases the expression of Ferrochelatase, mitochondrial (FECH). [12]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Ferrochelatase, mitochondrial (FECH). [14]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Ferrochelatase, mitochondrial (FECH). [15]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Ferrochelatase, mitochondrial (FECH). [11]
DNCB DMDTVYC Phase 2 DNCB increases the expression of Ferrochelatase, mitochondrial (FECH). [12]
Disulfiram DMCL2OK Phase 2 Trial Disulfiram increases the expression of Ferrochelatase, mitochondrial (FECH). [12]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Ferrochelatase, mitochondrial (FECH). [16]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Ferrochelatase, mitochondrial (FECH). [17]
Eugenol DM7US1H Patented Eugenol increases the expression of Ferrochelatase, mitochondrial (FECH). [12]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Ferrochelatase, mitochondrial (FECH). [18]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Ferrochelatase, mitochondrial (FECH). [12]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Ferrochelatase, mitochondrial (FECH). [19]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A decreases the expression of Ferrochelatase, mitochondrial (FECH). [20]
4-hydroxy-2-nonenal DM2LJFZ Investigative 4-hydroxy-2-nonenal decreases the expression of Ferrochelatase, mitochondrial (FECH). [9]
Tributylstannanyl DMHN7CB Investigative Tributylstannanyl decreases the activity of Ferrochelatase, mitochondrial (FECH). [21]
methyl salicylate DMKCG8H Investigative methyl salicylate increases the expression of Ferrochelatase, mitochondrial (FECH). [12]
2-Propanol, Isopropanol DML5O0H Investigative 2-Propanol, Isopropanol increases the expression of Ferrochelatase, mitochondrial (FECH). [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 31 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Erythropoietic Protoporphyria, Autosomal Recessive. 2012 Sep 27 [updated 2017 Sep 7]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
3 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
4 Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol Lett. 2015 Apr 16;234(2):139-50.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
8 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
9 Microarray analysis of H2O2-, HNE-, or tBH-treated ARPE-19 cells. Free Radic Biol Med. 2002 Nov 15;33(10):1419-32.
10 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
11 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
12 Keratinocyte gene expression profiles discriminate sensitizing and irritating compounds. Toxicol Sci. 2010 Sep;117(1):81-9.
13 The Isoniazid Metabolites Hydrazine and Pyridoxal Isonicotinoyl Hydrazone Modulate Heme Biosynthesis. Toxicol Sci. 2019 Mar 1;168(1):209-224. doi: 10.1093/toxsci/kfy294.
14 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
15 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
16 Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol. 2012 Apr 16;25(4):838-49.
17 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
18 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
19 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
20 Microphysiological system modeling of ochratoxin A-associated nephrotoxicity. Toxicology. 2020 Nov;444:152582. doi: 10.1016/j.tox.2020.152582. Epub 2020 Sep 6.
21 Metal inhibition of ferrochelatase activity in human lymphocytes. Clin Chim Acta. 1990 Apr 13;188(1):1-13. doi: 10.1016/0009-8981(90)90141-e.