General Information of Drug Off-Target (DOT) (ID: OTE07WND)

DOT Name Eukaryotic translation initiation factor 3 subunit I (EIF3I)
Synonyms eIF3i; Eukaryotic translation initiation factor 3 subunit 2; TGF-beta receptor-interacting protein 1; TRIP-1; eIF-3-beta; eIF3 p36
Gene Name EIF3I
Related Disease
Adult hepatocellular carcinoma ( )
Advanced cancer ( )
Carcinoma ( )
Colon cancer ( )
Colonic neoplasm ( )
Glioma ( )
Hepatocellular carcinoma ( )
Liver cancer ( )
Metastatic malignant neoplasm ( )
Neoplasm ( )
Neuroblastoma ( )
Melanoma ( )
UniProt ID
EIF3I_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6YBT; 6ZMW; 6ZON; 6ZP4; 6ZVJ; 7A09
Pfam ID
PF12894 ; PF00400
Sequence
MKPILLQGHERSITQIKYNREGDLLFTVAKDPIVNVWYSVNGERLGTYMGHTGAVWCVDA
DWDTKHVLTGSADNSCRLWDCETGKQLALLKTNSAVRTCGFDFGGNIIMFSTDKQMGYQC
FVSFFDLRDPSQIDNNEPYMKIPCNDSKITSAVWGPLGECIIAGHESGELNQYSAKSGEV
LVNVKEHSRQINDIQLSRDMTMFVTASKDNTAKLFDSTTLEHQKTFRTERPVNSAALSPN
YDHVVLGGGQEAMDVTTTSTRIGKFEARFFHLAFEEEFGRVKGHFGPINSVAFHPDGKSY
SSGGEDGYVRIHYFDPQYFEFEFEA
Function
Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression.
Reactome Pathway
Translation initiation complex formation (R-HSA-72649 )
Formation of a pool of free 40S subunits (R-HSA-72689 )
Formation of the ternary complex, and subsequently, the 43S complex (R-HSA-72695 )
Ribosomal scanning and start codon recognition (R-HSA-72702 )
GTP hydrolysis and joining of the 60S ribosomal subunit (R-HSA-72706 )
L13a-mediated translational silencing of Ceruloplasmin expression (R-HSA-156827 )

Molecular Interaction Atlas (MIA) of This DOT

12 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Adult hepatocellular carcinoma DIS6ZPAI Strong Biomarker [1]
Advanced cancer DISAT1Z9 Strong Biomarker [2]
Carcinoma DISH9F1N Strong Biomarker [3]
Colon cancer DISVC52G Strong Biomarker [4]
Colonic neoplasm DISSZ04P Strong Biomarker [4]
Glioma DIS5RPEH Strong Altered Expression [5]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [6]
Liver cancer DISDE4BI Strong Biomarker [1]
Metastatic malignant neoplasm DIS86UK6 Strong Altered Expression [2]
Neoplasm DISZKGEW Strong Altered Expression [2]
Neuroblastoma DISVZBI4 Strong Altered Expression [7]
Melanoma DIS1RRCY Limited Biomarker [2]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Eukaryotic translation initiation factor 3 subunit I (EIF3I). [8]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Eukaryotic translation initiation factor 3 subunit I (EIF3I). [9]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Eukaryotic translation initiation factor 3 subunit I (EIF3I). [10]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Eukaryotic translation initiation factor 3 subunit I (EIF3I). [11]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Eukaryotic translation initiation factor 3 subunit I (EIF3I). [12]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Eukaryotic translation initiation factor 3 subunit I (EIF3I). [13]
Marinol DM70IK5 Approved Marinol increases the expression of Eukaryotic translation initiation factor 3 subunit I (EIF3I). [14]
Tanespimycin DMNLQHK Phase 2 Tanespimycin decreases the expression of Eukaryotic translation initiation factor 3 subunit I (EIF3I). [15]
NVP-AUY922 DMTYXQF Phase 2 NVP-AUY922 decreases the expression of Eukaryotic translation initiation factor 3 subunit I (EIF3I). [15]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Eukaryotic translation initiation factor 3 subunit I (EIF3I). [18]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Eukaryotic translation initiation factor 3 subunit I (EIF3I). [19]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Eukaryotic translation initiation factor 3 subunit I (EIF3I). [20]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Eukaryotic translation initiation factor 3 subunit I (EIF3I). [21]
AHPN DM8G6O4 Investigative AHPN decreases the expression of Eukaryotic translation initiation factor 3 subunit I (EIF3I). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Eukaryotic translation initiation factor 3 subunit I (EIF3I). [16]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Eukaryotic translation initiation factor 3 subunit I (EIF3I). [17]
------------------------------------------------------------------------------------

References

1 The translation initiation factor eIF3i up-regulates vascular endothelial growth factor A, accelerates cell proliferation, and promotes angiogenesis in embryonic development and tumorigenesis.J Biol Chem. 2014 Oct 10;289(41):28310-23. doi: 10.1074/jbc.M114.571356. Epub 2014 Aug 21.
2 Cancer Targeted Gene Therapy for Inhibition of Melanoma Lung Metastasis with eIF3i shRNA Loaded Liposomes.Mol Pharm. 2020 Jan 6;17(1):229-238. doi: 10.1021/acs.molpharmaceut.9b00943. Epub 2019 Dec 10.
3 Carcinoma-associated eIF3i overexpression facilitates mTOR-dependent growth transformation.Mol Carcinog. 2006 Dec;45(12):957-67. doi: 10.1002/mc.20269.
4 EIF3i promotes colon oncogenesis by regulating COX-2 protein synthesis and -catenin activation.Oncogene. 2014 Aug 7;33(32):4156-63. doi: 10.1038/onc.2013.397. Epub 2013 Sep 23.
5 Systematically profiling the expression of eIF3 subunits in glioma reveals the expression of eIF3i has prognostic value in IDH-mutant lower grade glioma.Cancer Cell Int. 2019 Jun 4;19:155. doi: 10.1186/s12935-019-0867-1. eCollection 2019.
6 Clusterin facilitates metastasis by EIF3I/Akt/MMP13 signaling in hepatocellular carcinoma.Oncotarget. 2015 Feb 20;6(5):2903-16. doi: 10.18632/oncotarget.3093.
7 Expression of co-factors (SMRT and Trip-1) for retinoic acid receptors in human neuroectodermal cell lines.Biochem Biophys Res Commun. 1997 May 8;234(1):278-82. doi: 10.1006/bbrc.1997.6626.
8 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
9 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
10 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
11 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
12 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
13 Proteomic and functional analyses reveal a dual molecular mechanism underlying arsenic-induced apoptosis in human multiple myeloma cells. J Proteome Res. 2009 Jun;8(6):3006-19.
14 JunD is involved in the antiproliferative effect of Delta9-tetrahydrocannabinol on human breast cancer cells. Oncogene. 2008 Aug 28;27(37):5033-44.
15 Impact of Heat Shock Protein 90 Inhibition on the Proteomic Profile of Lung Adenocarcinoma as Measured by Two-Dimensional Electrophoresis Coupled with Mass Spectrometry. Cells. 2019 Jul 31;8(8):806. doi: 10.3390/cells8080806.
16 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
17 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
18 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
19 Proteomic signatures in thapsigargin-treated hepatoma cells. Chem Res Toxicol. 2011 Aug 15;24(8):1215-22. doi: 10.1021/tx200109y. Epub 2011 Jul 1.
20 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
21 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
22 ST1926, a novel and orally active retinoid-related molecule inducing apoptosis in myeloid leukemia cells: modulation of intracellular calcium homeostasis. Blood. 2004 Jan 1;103(1):194-207.