General Information of Drug Off-Target (DOT) (ID: OTE70JLY)

DOT Name GATOR1 complex protein DEPDC5 (DEPDC5)
Synonyms DEP domain-containing protein 5
Gene Name DEPDC5
Related Disease
Epilepsy, familial focal, with variable foci 1 ( )
Focal epilepsy ( )
Liver cirrhosis ( )
Autism spectrum disorder ( )
Band heterotopia of brain ( )
Childhood epilepsy with centrotemporal spikes ( )
Fleck corneal dystrophy ( )
Hepatitis B virus infection ( )
Hepatitis C virus infection ( )
Hepatocellular carcinoma ( )
Isolated cleft lip ( )
Leiomyoma ( )
Macular corneal dystrophy ( )
Metastatic malignant neoplasm ( )
Multiple endocrine neoplasia type 1 ( )
Neoplasm ( )
Non-insulin dependent diabetes ( )
Uterine fibroids ( )
West syndrome ( )
Frontal lobe epilepsy ( )
Gastrointestinal stromal tumour ( )
Tuberous sclerosis ( )
Autosomal dominant epilepsy with auditory features ( )
Autosomal dominant nocturnal frontal lobe epilepsy ( )
Familial focal epilepsy with variable foci ( )
Brugada syndrome ( )
Neuroblastoma ( )
Temporal lobe epilepsy ( )
UniProt ID
DEPD5_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6CES; 6CET; 7T3A; 7T3B; 7T3C; 8FW5
Pfam ID
PF00610 ; PF19418 ; PF12257
Sequence
MRTTKVYKLVIHKKGFGGSDDELVVNPKVFPHIKLGDIVEIAHPNDEYSPLLLQVKSLKE
DLQKETISVDQTVTQVFRLRPYQDVYVNVVDPKDVTLDLVELTFKDQYIGRGDMWRLKKS
LVSTCAYITQKVEFAGIRAQAGELWVKNEKVMCGYISEDTRVVFRSTSAMVYIFIQMSCE
MWDFDIYGDLYFEKAVNGFLADLFTKWKEKNCSHEVTVVLFSRTFYDAKSVDEFPEINRA
SIRQDHKGRFYEDFYKVVVQNERREEWTSLLVTIKKLFIQYPVLVRLEQAEGFPQGDNST
SAQGNYLEAINLSFNVFDKHYINRNFDRTGQMSVVITPGVGVFEVDRLLMILTKQRMIDN
GIGVDLVCMGEQPLHAVPLFKLHNRSAPRDSRLGDDYNIPHWINHSFYTSKSQLFCNSFT
PRIKLAGKKPASEKAKNGRDTSLGSPKESENALPIQVDYDAYDAQVFRLPGPSRAQCLTT
CRSVRERESHSRKSASSCDVSSSPSLPSRTLPTEEVRSQASDDSSLGKSANILMIPHPHL
HQYEVSSSLGYTSTRDVLENMMEPPQRDSSAPGRFHVGSAESMLHVRPGGYTPQRALINP
FAPSRMPMKLTSNRRRWMHTFPVGPSGEAIQIHHQTRQNMAELQGSGQRDPTHSSAELLE
LAYHEAAGRHSNSRQPGDGMSFLNFSGTEELSVGLLSNSGAGMNPRTQNKDSLEDSVSTS
PDPILTLSAPPVVPGFCCTVGVDWKSLTTPACLPLTTDYFPDRQGLQNDYTEGCYDLLPE
ADIDRRDEDGVQMTAQQVFEEFICQRLMQGYQIIVQPKTQKPNPAVPPPLSSSPLYSRGL
VSRNRPEEEDQYWLSMGRTFHKVTLKDKMITVTRYLPKYPYESAQIHYTYSLCPSHSDSE
FVSCWVEFSHERLEEYKWNYLDQYICSAGSEDFSLIESLKFWRTRFLLLPACVTATKRIT
EGEAHCDIYGDRPRADEDEWQLLDGFVRFVEGLNRIRRRHRSDRMMRKGTAMKGLQMTGP
ISTHSLESTAPPVGKKGTSALSALLEMEASQKCLGEQQAAVHGGKSSAQSAESSSVAMTP
TYMDSPRKDGAFFMEFVRSPRTASSAFYPQVSVDQTATPMLDGTSLGICTGQSMDRGNSQ
TFGNSQNIGEQGYSSTNSSDSSSQQLVASSLTSSSTLTEILEAMKHPSTGVQLLSEQKGL
SPYCFISAEVVHWLVNHVEGIQTQAMAIDIMQKMLEEQLITHASGEAWRTFIYGFYFYKI
VTDKEPDRVAMQQPATTWHTAGVDDFASFQRKWFEVAFVAEELVHSEIPAFLLPWLPSRP
ASYASRHSSFSRSFGGRSQAAALLAATVPEQRTVTLDVDVNNRTDRLEWCSCYYHGNFSL
NAAFEIKLHWMAVTAAVLFEMVQGWHRKATSCGFLLVPVLEGPFALPSYLYGDPLRAQLF
IPLNISCLLKEGSEHLFDSFEPETYWDRMHLFQEAIAHRFGFVQDKYSASAFNFPAENKP
QYIHVTGTVFLQLPYSKRKFSGQQRRRRNSTSSTNQNMFCEERVGYNWAYNTMLTKTWRS
SATGDEKFADRLLKDFTDFCINRDNRLVTFWTSCLEKMHASAP
Function
As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the mTORC1 pathway. In response to amino acid depletion, the GATOR1 complex has GTPase activating protein (GAP) activity and strongly increases GTP hydrolysis by RagA/RRAGA (or RagB/RRAGB) within heterodimeric Rag complexes, thereby turning them into their inactive GDP-bound form, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling. In the presence of abundant amino acids, the GATOR1 complex is negatively regulated by GATOR2, the other GATOR subcomplex, in this amino acid-sensing branch of the TORC1 pathway. Within the GATOR1 complex, DEPDC5 mediates direct interaction with the nucleotide-binding pocket of small GTPases Rag (RagA/RRAGA, RagB/RRAGB, RagC/RRAGC and/or RagD/RRAGD) and coordinates their nucleotide loading states by promoting RagA/RRAGA or RagB/RRAGB into their GDP-binding state and RagC/RRAGC or RagD/RRAGD into their GTP-binding state. However, it does not execute the GAP activity, which is mediated by NPRL2.
Tissue Specificity Expressed in developing and adult brain.
KEGG Pathway
mTOR sig.ling pathway (hsa04150 )
Reactome Pathway
Amino acids regulate mTORC1 (R-HSA-9639288 )

Molecular Interaction Atlas (MIA) of This DOT

28 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Epilepsy, familial focal, with variable foci 1 DIS50UO4 Definitive Autosomal dominant [1]
Focal epilepsy DIS4LY5L Definitive Autosomal dominant [2]
Liver cirrhosis DIS4G1GX Definitive Genetic Variation [3]
Autism spectrum disorder DISXK8NV Strong Genetic Variation [4]
Band heterotopia of brain DISQF9HP Strong Biomarker [5]
Childhood epilepsy with centrotemporal spikes DISKT2L5 Strong CausalMutation [6]
Fleck corneal dystrophy DISERQJ1 Strong Biomarker [7]
Hepatitis B virus infection DISLQ2XY Strong Biomarker [8]
Hepatitis C virus infection DISQ0M8R Strong Genetic Variation [9]
Hepatocellular carcinoma DIS0J828 Strong Genetic Variation [10]
Isolated cleft lip DIS2O2JV Strong Genetic Variation [11]
Leiomyoma DISLDDFN Strong Genetic Variation [12]
Macular corneal dystrophy DISOLD0H Strong Biomarker [13]
Metastatic malignant neoplasm DIS86UK6 Strong Genetic Variation [14]
Multiple endocrine neoplasia type 1 DIS0RJRK Strong Genetic Variation [14]
Neoplasm DISZKGEW Strong Biomarker [15]
Non-insulin dependent diabetes DISK1O5Z Strong Genetic Variation [16]
Uterine fibroids DISBZRMJ Strong Genetic Variation [12]
West syndrome DISLIAU9 Strong Biomarker [17]
Frontal lobe epilepsy DISHN8AO moderate Genetic Variation [18]
Gastrointestinal stromal tumour DIS6TJYS moderate Biomarker [19]
Tuberous sclerosis DISEMUGZ moderate Biomarker [20]
Autosomal dominant epilepsy with auditory features DISFZN2O Supportive Autosomal dominant [21]
Autosomal dominant nocturnal frontal lobe epilepsy DISE3C4O Supportive Autosomal dominant [21]
Familial focal epilepsy with variable foci DIS50BKW Supportive Autosomal dominant [21]
Brugada syndrome DISSGN0E Limited Autosomal dominant [22]
Neuroblastoma DISVZBI4 Limited Biomarker [13]
Temporal lobe epilepsy DISNOPXX Limited Genetic Variation [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 28 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of GATOR1 complex protein DEPDC5 (DEPDC5). [24]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of GATOR1 complex protein DEPDC5 (DEPDC5). [27]
GALLICACID DM6Y3A0 Investigative GALLICACID decreases the expression of GATOR1 complex protein DEPDC5 (DEPDC5). [28]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of GATOR1 complex protein DEPDC5 (DEPDC5). [25]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of GATOR1 complex protein DEPDC5 (DEPDC5). [26]
------------------------------------------------------------------------------------

References

1 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 DEPDC5 variants increase fibrosis progression in Europeans with chronic hepatitis C virus infection.Hepatology. 2016 Feb;63(2):418-27. doi: 10.1002/hep.28322. Epub 2015 Dec 18.
4 Autistic Siblings with Novel Mutations in Two Different Genes: Insight for Genetic Workups of Autistic Siblings and Connection to Mitochondrial Dysfunction.Front Pediatr. 2017 Oct 12;5:219. doi: 10.3389/fped.2017.00219. eCollection 2017.
5 Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations.Ann Neurol. 2014 May;75(5):782-7. doi: 10.1002/ana.24126. Epub 2014 Apr 14.
6 Exome-wide analysis of mutational burden in patients with typical and atypical Rolandic epilepsy.Eur J Hum Genet. 2018 Feb;26(2):258-264. doi: 10.1038/s41431-017-0034-x. Epub 2018 Jan 22.
7 Functional screening of GATOR1 complex variants reveals a role for mTORC1 deregulation in FCD and focal epilepsy.Neurobiol Dis. 2020 Feb;134:104640. doi: 10.1016/j.nbd.2019.104640. Epub 2019 Oct 19.
8 Genetic insights on host and hepatitis B virus in liver diseases.Mutat Res Rev Mutat Res. 2014 Oct-Dec;762:65-75. doi: 10.1016/j.mrrev.2014.06.001. Epub 2014 Jul 2.
9 Correlation between the DEPDC5 rs1012068 polymorphism and the risk of HBV-related hepatocellular carcinoma.Clin Res Hepatol Gastroenterol. 2019 Aug;43(4):446-450. doi: 10.1016/j.clinre.2018.12.005. Epub 2019 Jan 23.
10 A variant in the MICA gene is associated with liver fibrosis progression in chronic hepatitis C through TGF-1 dependent mechanisms.Sci Rep. 2019 Feb 5;9(1):1439. doi: 10.1038/s41598-018-35736-2.
11 Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic heterogeneity.Nat Commun. 2017 Feb 24;8:14364. doi: 10.1038/ncomms14364.
12 Clonally related uterine leiomyomas are common and display branched tumor evolution.Hum Mol Genet. 2015 Aug 1;24(15):4407-16. doi: 10.1093/hmg/ddv177. Epub 2015 May 10.
13 DEPDC5 and NPRL3 modulate cell size, filopodial outgrowth, and localization of mTOR in neural progenitor cells and neurons.Neurobiol Dis. 2018 Jun;114:184-193. doi: 10.1016/j.nbd.2018.02.013. Epub 2018 Feb 24.
14 Loss of Chromatin-Remodeling Proteins and/or CDKN2A Associates With Metastasis of Pancreatic Neuroendocrine Tumors and Reduced Patient Survival Times.Gastroenterology. 2018 Jun;154(8):2060-2063.e8. doi: 10.1053/j.gastro.2018.02.026. Epub 2018 Mar 2.
15 Phosphorylation of DEPDC5, a component of the GATOR1 complex, releases inhibition of mTORC1 and promotes tumor growth.Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20505-20510. doi: 10.1073/pnas.1904774116. Epub 2019 Sep 23.
16 Pilot genome-wide association study identifying novel risk loci for type 2 diabetes in a Maya population.Gene. 2018 Nov 30;677:324-331. doi: 10.1016/j.gene.2018.08.041. Epub 2018 Aug 18.
17 Genotype-phenotype correlation on 45 individuals with West syndrome.Eur J Paediatr Neurol. 2020 Mar;25:134-138. doi: 10.1016/j.ejpn.2019.11.010. Epub 2019 Nov 26.
18 Nocturnal frontal lobe epilepsy caused by a mutation in the GATOR1 complex gene NPRL3.Epilepsia. 2016 Mar;57(3):e60-3. doi: 10.1111/epi.13307. Epub 2016 Jan 20.
19 Mutational inactivation of mTORC1 repressor gene DEPDC5 in human gastrointestinal stromal tumors.Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22746-22753. doi: 10.1073/pnas.1914542116. Epub 2019 Oct 21.
20 mTOR signaling in epilepsy: insights from malformations of cortical development.Cold Spring Harb Perspect Med. 2015 Apr 1;5(4):a022442. doi: 10.1101/cshperspect.a022442.
21 Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet. 2013 May;45(5):546-51. doi: 10.1038/ng.2599. Epub 2013 Mar 31.
22 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
23 DEPDC5 mutations are not a frequent cause of familial temporal lobe epilepsy.Epilepsia. 2015 Oct;56(10):e168-71. doi: 10.1111/epi.13094. Epub 2015 Jul 27.
24 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
25 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
26 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
27 Characterization of the Molecular Alterations Induced by the Prolonged Exposure of Normal Colon Mucosa and Colon Cancer Cells to Low-Dose Bisphenol A. Int J Mol Sci. 2022 Oct 1;23(19):11620. doi: 10.3390/ijms231911620.
28 Gene expression profile analysis of gallic acid-induced cell death process. Sci Rep. 2021 Aug 18;11(1):16743. doi: 10.1038/s41598-021-96174-1.