General Information of Drug Off-Target (DOT) (ID: OTEMVFX7)

DOT Name Receptor expression-enhancing protein 1 (REEP1)
Synonyms Spastic paraplegia 31 protein
Gene Name REEP1
Related Disease
Hereditary spastic paraplegia 31 ( )
Nervous system disease ( )
Acquired partial lipodystrophy ( )
Cardiomyopathy ( )
Hereditary neuropathy with liability to pressure palsies ( )
Hereditary spastic paraplegia ( )
Hereditary spastic paraplegia 10 ( )
Hereditary spastic paraplegia 3A ( )
Hereditary spastic paraplegia 4 ( )
Lipodystrophy ( )
Nerve compression syndrome ( )
Neuronopathy, distal hereditary motor, type 5 ( )
Neuronopathy, distal hereditary motor, type 5B ( )
Peripheral neuropathy ( )
Polyneuropathy ( )
Restless legs syndrome ( )
Vascular purpura ( )
Atrial fibrillation ( )
Familial atrial fibrillation ( )
Hereditary spastic paraplegia 7 ( )
Neuronopathy, distal hereditary motor, type 5A ( )
Intellectual disability ( )
Spinal muscular atrophy, distal, autosomal recessive, 6 ( )
UniProt ID
REEP1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF03134
Sequence
MVSWIISRLVVLIFGTLYPAYYSYKAVKSKDIKEYVKWMMYWIIFALFTTAETFTDIFLC
WFPFYYELKIAFVAWLLSPYTKGSSLLYRKFVHPTLSSKEKEIDDCLVQAKDRSYDALVH
FGKRGLNVAATAAVMAASKGQGALSERLRSFSMQDLTTIRGDGAPAPSGPPPPGSGRASG
KHGQPKMSRSASESASSSGTA
Function
Required for endoplasmic reticulum (ER) network formation, shaping and remodeling; it links ER tubules to the cytoskeleton. May also enhance the cell surface expression of odorant receptors. May play a role in long-term axonal maintenance.
Tissue Specificity Expressed in circumvallate papillae and testis.
Reactome Pathway
Expression and translocation of olfactory receptors (R-HSA-9752946 )

Molecular Interaction Atlas (MIA) of This DOT

23 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hereditary spastic paraplegia 31 DISZZWA2 Definitive Autosomal dominant [1]
Nervous system disease DISJ7GGT Definitive Genetic Variation [2]
Acquired partial lipodystrophy DISWXX4G Strong Biomarker [3]
Cardiomyopathy DISUPZRG Strong Biomarker [4]
Hereditary neuropathy with liability to pressure palsies DISY0X1V Strong Genetic Variation [5]
Hereditary spastic paraplegia DISGZQV1 Strong Biomarker [5]
Hereditary spastic paraplegia 10 DISYFO3L Strong Biomarker [6]
Hereditary spastic paraplegia 3A DISWGEU6 Strong Genetic Variation [7]
Hereditary spastic paraplegia 4 DISFUYL2 Strong Genetic Variation [7]
Lipodystrophy DIS3SGVD Strong Genetic Variation [3]
Nerve compression syndrome DIS93JJO Strong Genetic Variation [5]
Neuronopathy, distal hereditary motor, type 5 DISTSHF6 Strong GermlineCausalMutation [4]
Neuronopathy, distal hereditary motor, type 5B DISFQQ5I Strong Autosomal dominant [8]
Peripheral neuropathy DIS7KN5G Strong Genetic Variation [5]
Polyneuropathy DISB9G3W Strong Genetic Variation [5]
Restless legs syndrome DISNWY00 Strong Biomarker [9]
Vascular purpura DIS6ZZMF Strong Biomarker [5]
Atrial fibrillation DIS15W6U moderate Biomarker [10]
Familial atrial fibrillation DISL4AGF moderate Biomarker [10]
Hereditary spastic paraplegia 7 DIS4A678 moderate Biomarker [11]
Neuronopathy, distal hereditary motor, type 5A DISD3JAD Supportive Autosomal dominant [4]
Intellectual disability DISMBNXP Limited Biomarker [12]
Spinal muscular atrophy, distal, autosomal recessive, 6 DIS70FM2 Limited Autosomal recessive [1]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Receptor expression-enhancing protein 1 (REEP1). [13]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Receptor expression-enhancing protein 1 (REEP1). [22]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Receptor expression-enhancing protein 1 (REEP1). [24]
------------------------------------------------------------------------------------
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Receptor expression-enhancing protein 1 (REEP1). [14]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Receptor expression-enhancing protein 1 (REEP1). [15]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Receptor expression-enhancing protein 1 (REEP1). [16]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Receptor expression-enhancing protein 1 (REEP1). [17]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Receptor expression-enhancing protein 1 (REEP1). [18]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Receptor expression-enhancing protein 1 (REEP1). [19]
Menadione DMSJDTY Approved Menadione affects the expression of Receptor expression-enhancing protein 1 (REEP1). [20]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Receptor expression-enhancing protein 1 (REEP1). [21]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Receptor expression-enhancing protein 1 (REEP1). [23]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Receptor expression-enhancing protein 1 (REEP1). [25]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)

References

1 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
2 Spastic paraplegia type 31: A novel REEP1 splice site donor variant and expansion of the phenotype variability.Parkinsonism Relat Disord. 2018 Jan;46:79-83. doi: 10.1016/j.parkreldis.2017.10.012. Epub 2017 Oct 21.
3 Reep1 null mice reveal a converging role for hereditary spastic paraplegia proteins in lipid droplet regulation.Hum Mol Genet. 2016 Dec 1;25(23):5111-5125. doi: 10.1093/hmg/ddw315.
4 Exome sequencing identifies a REEP1 mutation involved in distal hereditary motor neuropathy type V. Am J Hum Genet. 2012 Jul 13;91(1):139-45. doi: 10.1016/j.ajhg.2012.05.007. Epub 2012 Jun 14.
5 Peripheral neuropathy in hereditary spastic paraplegia caused by REEP1 variants.J Neurol. 2019 Mar;266(3):735-744. doi: 10.1007/s00415-019-09196-1. Epub 2019 Jan 12.
6 De novo REEP2 missense mutation in pure hereditary spastic paraplegia.Ann Clin Transl Neurol. 2017 Apr 11;4(5):347-350. doi: 10.1002/acn3.404. eCollection 2017 May.
7 Molecular spectrum of the SPAST, ATL1 and REEP1 gene mutations associated with the most common hereditary spastic paraplegias in a group of Polish patients.J Neurol Sci. 2015 Dec 15;359(1-2):35-9. doi: 10.1016/j.jns.2015.10.030. Epub 2015 Oct 17.
8 REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31. Brain. 2008 Apr;131(Pt 4):1078-86. doi: 10.1093/brain/awn026. Epub 2008 Mar 5.
9 ATL1 and REEP1 mutations in hereditary and sporadic upper motor neuron syndromes.J Neurol. 2013 Mar;260(3):869-75. doi: 10.1007/s00415-012-6723-z. Epub 2012 Oct 30.
10 Biobank-driven genomic discovery yields new insight into atrial fibrillation biology.Nat Genet. 2018 Sep;50(9):1234-1239. doi: 10.1038/s41588-018-0171-3. Epub 2018 Jul 30.
11 Spastic paraplegia gene 7 in patients with spasticity and/or optic neuropathy.Brain. 2012 Oct;135(Pt 10):2980-93. doi: 10.1093/brain/aws240.
12 Contribution of SNP arrays in diagnosis of deletion 2p11.2-p12.Gene. 2012 Jan 15;492(1):315-8. doi: 10.1016/j.gene.2011.10.035. Epub 2011 Oct 28.
13 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
14 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
15 Retinoic acid receptor alpha amplifications and retinoic acid sensitivity in breast cancers. Clin Breast Cancer. 2013 Oct;13(5):401-8.
16 Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol Lett. 2015 Apr 16;234(2):139-50.
17 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
18 Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol. 2009 Nov 1;240(3):355-66.
19 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
20 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
21 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
22 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018 Nov;121:214-223. doi: 10.1016/j.fct.2018.08.034. Epub 2018 Aug 26.
23 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
24 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
25 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.