General Information of Drug Off-Target (DOT) (ID: OTF3WLIM)

DOT Name Protein pelota homolog (PELO)
Synonyms hPelota; Protein Dom34 homolog
Gene Name PELO
Related Disease
Non-insulin dependent diabetes ( )
UniProt ID
PELO_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1X52; 5EO3; 5LZW; 5LZX; 5LZY; 5LZZ
Pfam ID
PF03463 ; PF03464 ; PF03465
Sequence
MKLVRKNIEKDNAGQVTLVPEEPEDMWHTYNLVQVGDSLRASTIRKVQTESSTGSVGSNR
VRTTLTLCVEAIDFDSQACQLRVKGTNIQENEYVKMGAYHTIELEPNRQFTLAKKQWDSV
VLERIEQACDPAWSADVAAVVMQEGLAHICLVTPSMTLTRAKVEVNIPRKRKGNCSQHDR
ALERFYEQVVQAIQRHIHFDVVKCILVASPGFVREQFCDYLFQQAVKTDNKLLLENRSKF
LQVHASSGHKYSLKEALCDPTVASRLSDTKAAGEVKALDDFYKMLQHEPDRAFYGLKQVE
KANEAMAIDTLLISDELFRHQDVATRSRYVRLVDSVKENAGTVRIFSSLHVSGEQLSQLT
GVAAILRFPVPELSDQEGDSSSEED
Function
Component of the Pelota-HBS1L complex, a complex that recognizes stalled ribosomes and triggers the No-Go Decay (NGD) pathway. In the Pelota-HBS1L complex, PELO recognizes ribosomes stalled at the 3' end of an mRNA and engages stalled ribosomes by destabilizing mRNA in the mRNA channel. Following mRNA extraction from stalled ribosomes by the SKI complex, the Pelota-HBS1L complex promotes recruitment of ABCE1, which drives the disassembly of stalled ribosomes, followed by degradation of damaged mRNAs as part of the NGD pathway. As part of the PINK1-regulated signaling, upon mitochondrial damage is recruited to the ribosome/mRNA-ribonucleoprotein complex associated to mitochondrial outer membrane thereby enabling the recruitment of autophagy receptors and induction of mitophagy.
Tissue Specificity Ubiquitously expressed.
KEGG Pathway
mR. surveillance pathway (hsa03015 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Non-insulin dependent diabetes DISK1O5Z Strong Genetic Variation [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Vinblastine DM5TVS3 Approved Protein pelota homolog (PELO) affects the response to substance of Vinblastine. [16]
------------------------------------------------------------------------------------
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Protein pelota homolog (PELO). [2]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Protein pelota homolog (PELO). [3]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Protein pelota homolog (PELO). [4]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Protein pelota homolog (PELO). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Protein pelota homolog (PELO). [6]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Protein pelota homolog (PELO). [7]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Protein pelota homolog (PELO). [3]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Protein pelota homolog (PELO). [8]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Protein pelota homolog (PELO). [9]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Protein pelota homolog (PELO). [10]
Marinol DM70IK5 Approved Marinol decreases the expression of Protein pelota homolog (PELO). [11]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Protein pelota homolog (PELO). [12]
Etoposide DMNH3PG Approved Etoposide decreases the expression of Protein pelota homolog (PELO). [7]
Mitomycin DMH0ZJE Approved Mitomycin decreases the expression of Protein pelota homolog (PELO). [7]
Colchicine DM2POTE Approved Colchicine decreases the expression of Protein pelota homolog (PELO). [7]
Hydroxyurea DMOQVU9 Approved Hydroxyurea decreases the expression of Protein pelota homolog (PELO). [7]
Adenine DMZLHKJ Approved Adenine decreases the expression of Protein pelota homolog (PELO). [7]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Protein pelota homolog (PELO). [13]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Protein pelota homolog (PELO). [10]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Protein pelota homolog (PELO). [3]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Protein pelota homolog (PELO). [14]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Protein pelota homolog (PELO). [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)

References

1 Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population.Nat Genet. 2019 Mar;51(3):379-386. doi: 10.1038/s41588-018-0332-4. Epub 2019 Feb 4.
2 Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxicol. 2014 Mar 17;27(3):408-20.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 The RET oncogene is a critical component of transcriptional programs associated with retinoic acid-induced differentiation in neuroblastoma. Mol Cancer Ther. 2007 Apr;6(4):1300-9.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Utilization of CDKN1A/p21 gene for class discrimination of DNA damage-induced clastogenicity. Toxicology. 2014 Jan 6;315:8-16. doi: 10.1016/j.tox.2013.10.009. Epub 2013 Nov 6.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
10 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
11 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
12 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
13 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
14 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
15 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
16 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.