General Information of Drug Off-Target (DOT) (ID: OTIPNKTU)

DOT Name Leucine-rich melanocyte differentiation-associated protein (LRMDA)
Gene Name LRMDA
Related Disease
Atrial fibrillation ( )
Chromosomal disorder ( )
Chronic obstructive pulmonary disease ( )
Cleft palate ( )
Drug dependence ( )
Isolated cleft palate ( )
Non-insulin dependent diabetes ( )
Oculocutaneous albinism type 7 ( )
Substance abuse ( )
Substance dependence ( )
Systemic sclerosis ( )
Albinism ( )
Breast cancer ( )
Breast carcinoma ( )
Familial atrial fibrillation ( )
X-linked recessive ocular albinism ( )
Alopecia ( )
Androgenetic alopecia ( )
Baldness, male pattern ( )
UniProt ID
LRMDA_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF14580
Sequence
MEKYLSLSGNHSSNKRSLEGLSAFRSLEELILDNNQLGDDLVLPGLPRLHTLTLNKNRIT
DLENLLDHLAEVTPALEYLSLLGNVACPNELVSLEKDEEDYKRYRCFVLYKLPNLKFLDA
QKVTRQEREEALVRGVFMKVVKPKASSEDVASSPERHYTPLPSASRELTSHQGVLGKCRY
VYYGKNSEGNRFIRDDQL
Function Required for melanocyte differentiation.
Tissue Specificity In the embryo, expressed in melanoblasts. In the fetus, expressed in melanocytes. Not detected in retinal pigment epithelial cells.

Molecular Interaction Atlas (MIA) of This DOT

19 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Atrial fibrillation DIS15W6U Strong Genetic Variation [1]
Chromosomal disorder DISM5BB5 Strong Genetic Variation [2]
Chronic obstructive pulmonary disease DISQCIRF Strong Genetic Variation [3]
Cleft palate DIS6G5TF Strong Biomarker [4]
Drug dependence DIS9IXRC Strong Biomarker [5]
Isolated cleft palate DISV80CD Strong Biomarker [4]
Non-insulin dependent diabetes DISK1O5Z Strong Genetic Variation [6]
Oculocutaneous albinism type 7 DISVVH65 Strong Autosomal recessive [7]
Substance abuse DIS327VW Strong Biomarker [5]
Substance dependence DISDRAAR Strong Biomarker [5]
Systemic sclerosis DISF44L6 Strong Genetic Variation [8]
Albinism DIS5D82I moderate Genetic Variation [7]
Breast cancer DIS7DPX1 moderate Genetic Variation [9]
Breast carcinoma DIS2UE88 moderate Genetic Variation [9]
Familial atrial fibrillation DISL4AGF moderate Biomarker [1]
X-linked recessive ocular albinism DISI9S32 moderate Genetic Variation [10]
Alopecia DIS37HU4 Limited Genetic Variation [11]
Androgenetic alopecia DISSJR1P Limited Genetic Variation [12]
Baldness, male pattern DIS9C9RO Limited Genetic Variation [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Aspirin DM672AH Approved Leucine-rich melanocyte differentiation-associated protein (LRMDA) increases the Acute lymphocytic leukaemia ADR of Aspirin. [24]
------------------------------------------------------------------------------------
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Leucine-rich melanocyte differentiation-associated protein (LRMDA). [13]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Leucine-rich melanocyte differentiation-associated protein (LRMDA). [14]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Leucine-rich melanocyte differentiation-associated protein (LRMDA). [15]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Leucine-rich melanocyte differentiation-associated protein (LRMDA). [16]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Leucine-rich melanocyte differentiation-associated protein (LRMDA). [17]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Leucine-rich melanocyte differentiation-associated protein (LRMDA). [19]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Leucine-rich melanocyte differentiation-associated protein (LRMDA). [20]
Ethanol DMDRQZU Approved Ethanol increases the expression of Leucine-rich melanocyte differentiation-associated protein (LRMDA). [21]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Leucine-rich melanocyte differentiation-associated protein (LRMDA). [20]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Leucine-rich melanocyte differentiation-associated protein (LRMDA). [22]
PIRINIXIC ACID DM82Y75 Preclinical PIRINIXIC ACID increases the expression of Leucine-rich melanocyte differentiation-associated protein (LRMDA). [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Leucine-rich melanocyte differentiation-associated protein (LRMDA). [18]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Leucine-rich melanocyte differentiation-associated protein (LRMDA). [23]
------------------------------------------------------------------------------------

References

1 Multi-ethnic genome-wide association study for atrial fibrillation.Nat Genet. 2018 Jun 11;50(9):1225-1233. doi: 10.1038/s41588-018-0133-9.
2 Chromosome aberrations involving 10q22: report of three overlapping interstitial deletions and a balanced translocation disrupting C10orf11.Eur J Hum Genet. 2010 Mar;18(3):291-5. doi: 10.1038/ejhg.2009.163. Epub 2009 Oct 21.
3 Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations.Nat Genet. 2019 Mar;51(3):494-505. doi: 10.1038/s41588-018-0342-2. Epub 2019 Feb 25.
4 De Novo 1.77-Mb Microdeletion of 10q22.2q22.3 in a Girl With Developmental Delay, Speech Delay, Congenital Cleft Palate, and Bilateral Hearing Impairment.Cleft Palate Craniofac J. 2017 May;54(3):343-350. doi: 10.1597/15-171. Epub 2016 Mar 31.
5 Genome wide association for addiction: replicated results and comparisons of two analytic approaches.PLoS One. 2010 Jan 21;5(1):e8832. doi: 10.1371/journal.pone.0008832.
6 Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population.Nat Genet. 2019 Mar;51(3):379-386. doi: 10.1038/s41588-018-0332-4. Epub 2019 Feb 4.
7 Mutations in c10orf11, a melanocyte-differentiation gene, cause autosomal-recessive albinism. Am J Hum Genet. 2013 Mar 7;92(3):415-21. doi: 10.1016/j.ajhg.2013.01.006. Epub 2013 Feb 7.
8 A systemic sclerosis and systemic lupus erythematosus pan-meta-GWAS reveals new shared susceptibility loci.Hum Mol Genet. 2013 Oct 1;22(19):4021-9. doi: 10.1093/hmg/ddt248. Epub 2013 Jun 4.
9 A genome-wide association study identifies locus at 10q22 associated with clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients in Japanese.Hum Mol Genet. 2012 Apr 1;21(7):1665-72. doi: 10.1093/hmg/ddr597. Epub 2011 Dec 16.
10 A pathogenic haplotype, common in Europeans, causes autosomal recessive albinism and uncovers missing heritability in OCA1.Sci Rep. 2019 Jan 24;9(1):645. doi: 10.1038/s41598-018-37272-5.
11 Genetic prediction of male pattern baldness.PLoS Genet. 2017 Feb 14;13(2):e1006594. doi: 10.1371/journal.pgen.1006594. eCollection 2017 Feb.
12 GWAS for male-pattern baldness identifies 71 susceptibility loci explaining 38% of the risk.Nat Commun. 2017 Nov 17;8(1):1584. doi: 10.1038/s41467-017-01490-8.
13 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
14 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
15 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
16 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
17 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
18 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
19 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
20 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
21 Use of transcriptomics in hazard identification and next generation risk assessment: A case study with clothianidin. Food Chem Toxicol. 2022 Aug;166:113212. doi: 10.1016/j.fct.2022.113212. Epub 2022 Jun 8.
22 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
23 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
24 Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol. 2009 Dec 10;27(35):5972-8.