General Information of Drug Off-Target (DOT) (ID: OTKWBUGK)

DOT Name Polyamine-transporting ATPase 13A2 (ATP13A2)
Synonyms EC 7.6.2.-
Gene Name ATP13A2
Related Disease
Kufor-Rakeb syndrome ( )
Adult neuronal ceroid lipofuscinosis ( )
Advanced cancer ( )
Autism spectrum disorder ( )
Autosomal recessive spastic paraplegia type 78 ( )
Cerebellar ataxia ( )
Ceroid lipofuscinosis, neuronal, 4 (Kufs type) ( )
CLN2 Batten disease ( )
Complex hereditary spastic paraplegia ( )
Gaucher disease ( )
Hereditary spastic paraplegia 11 ( )
Intellectual disability ( )
Juvenile-onset Parkinson disease ( )
Lafora disease ( )
Late infantile neuronal ceroid lipofuscinosis ( )
Lysosomal storage disease ( )
Nervous system disease ( )
Neurodegeneration with brain iron accumulation ( )
Neurodegeneration with brain iron accumulation 2A ( )
Neurodegeneration with brain iron accumulation 5 ( )
Neurodegenerative disease ( )
Neuronal ceroid lipofuscinosis ( )
Parkinsonian disorder ( )
Polyneuropathy ( )
Vascular purpura ( )
Young-onset Parkinson disease ( )
Amyotrophic lateral sclerosis ( )
Atypical juvenile parkinsonism ( )
Dementia ( )
Hereditary spastic paraplegia ( )
Idiopathic parkinson disease ( )
Parkinsonism due to ATP13A2 deficiency ( )
Autosomal recessive juvenile Parkinson disease 2 ( )
Hereditary motor and sensory neuropathy ( )
Melanoma ( )
Neuroblastoma ( )
UniProt ID
AT132_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7FJM; 7FJP; 7FJQ; 7M5V; 7M5X; 7M5Y; 7N70; 7N72; 7N73; 7N74; 7N75; 7N76; 7N77; 7N78; 7VPI; 7VPJ; 7VPK; 7VPL
EC Number
7.6.2.-
Pfam ID
PF00122 ; PF12409
Sequence
MSADSSPLVGSTPTGYGTLTIGTSIDPLSSSVSSVRLSGYCGSPWRVIGYHVVVWMMAGI
PLLLFRWKPLWGVRLRLRPCNLAHAETLVIEIRDKEDSSWQLFTVQVQTEAIGEGSLEPS
PQSQAEDGRSQAAVGAVPEGAWKDTAQLHKSEEAVSVGQKRVLRYYLFQGQRYIWIETQQ
AFYQVSLLDHGRSCDDVHRSRHGLSLQDQMVRKAIYGPNVISIPVKSYPQLLVDEALNPY
YGFQAFSIALWLADHYYWYALCIFLISSISICLSLYKTRKQSQTLRDMVKLSMRVCVCRP
GGEEEWVDSSELVPGDCLVLPQEGGLMPCDAALVAGECMVNESSLTGESIPVLKTALPEG
LGPYCAETHRRHTLFCGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPINFK
FYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRALDLVTVVVPPALPAAMTVC
TLYAQSRLRRQGIFCIHPLRINLGGKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLV
PEPRRLPVGPLLRALATCHALSRLQDTPVGDPMDLKMVESTGWVLEEEPAADSAFGTQVL
AVMRPPLWEPQLQAMEEPPVPVSVLHRFPFSSALQRMSVVVAWPGATQPEAYVKGSPELV
AGLCNPETVPTDFAQMLQSYTAAGYRVVALASKPLPTVPSLEAAQQLTRDTVEGDLSLLG
LLVMRNLLKPQTTPVIQALRRTRIRAVMVTGDNLQTAVTVARGCGMVAPQEHLIIVHATH
PERGQPASLEFLPMESPTAVNGVKDPDQAASYTVEPDPRSRHLALSGPTFGIIVKHFPKL
LPKVLVQGTVFARMAPEQKTELVCELQKLQYCVGMCGDGANDCGALKAADVGISLSQAEA
SVVSPFTSSMASIECVPMVIREGRCSLDTSFSVFKYMALYSLTQFISVLILYTINTNLGD
LQFLAIDLVITTTVAVLMSRTGPALVLGRVRPPGALLSVPVLSSLLLQMVLVTGVQLGGY
FLTLAQPWFVPLNRTVAAPDNLPNYENTVVFSLSSFQYLILAAAVSKGAPFRRPLYTNVP
FLVALALLSSVLVGLVLVPGLLQGPLALRNITDTGFKLLLLGLVTLNFVGAFMLESVLDQ
CLPACLRRLRPKRASKKRFKQLERELAEQPWPPLPAGPLR
Function
ATPase which acts as a lysosomal polyamine exporter with high affinity for spermine. Also stimulates cellular uptake of polyamines and protects against polyamine toxicity. Plays a role in intracellular cation homeostasis and the maintenance of neuronal integrity. Contributes to cellular zinc homeostasis. Confers cellular protection against Mn(2+) and Zn(2+) toxicity and mitochondrial stress. Required for proper lysosomal and mitochondrial maintenance. Regulates the autophagy-lysosome pathway through the control of SYT11 expression at both transcriptional and post-translational levels. Facilitates recruitment of deacetylase HDAC6 to lysosomes to deacetylate CTTN, leading to actin polymerization, promotion of autophagosome-lysosome fusion and completion of autophagy. Promotes secretion of exosomes as well as secretion of SCNA via exosomes. Plays a role in lipid homeostasis.
Tissue Specificity
Expressed in brain; protein levels are markedly increased in brain from subjects with Parkinson disease and subjects with dementia with Lewy bodies. Detected in pyramidal neurons located throughout the cingulate cortex (at protein level). In the substantia nigra, it is found in neuromelanin-positive dopaminergic neurons (at protein level).
Reactome Pathway
Ion transport by P-type ATPases (R-HSA-936837 )

Molecular Interaction Atlas (MIA) of This DOT

36 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Kufor-Rakeb syndrome DIS09C7Z Definitive Autosomal recessive [1]
Adult neuronal ceroid lipofuscinosis DIS5UHAA Strong Biomarker [2]
Advanced cancer DISAT1Z9 Strong Biomarker [3]
Autism spectrum disorder DISXK8NV Strong Biomarker [4]
Autosomal recessive spastic paraplegia type 78 DIS8MMBW Strong Autosomal recessive [5]
Cerebellar ataxia DIS9IRAV Strong Genetic Variation [6]
Ceroid lipofuscinosis, neuronal, 4 (Kufs type) DISC5V9S Strong Biomarker [2]
CLN2 Batten disease DISZC5YB Strong Biomarker [2]
Complex hereditary spastic paraplegia DIS9KXQY Strong Biomarker [7]
Gaucher disease DISTW5JG Strong Genetic Variation [8]
Hereditary spastic paraplegia 11 DIS8K8V4 Strong Genetic Variation [9]
Intellectual disability DISMBNXP Strong Genetic Variation [10]
Juvenile-onset Parkinson disease DISNT5BI Strong Genetic Variation [11]
Lafora disease DIS83JHH Strong Altered Expression [12]
Late infantile neuronal ceroid lipofuscinosis DISI3RIL Strong Biomarker [2]
Lysosomal storage disease DIS6QM6U Strong Altered Expression [13]
Nervous system disease DISJ7GGT Strong Biomarker [7]
Neurodegeneration with brain iron accumulation DISRK4DZ Strong Genetic Variation [14]
Neurodegeneration with brain iron accumulation 2A DIS9XEBF Strong Genetic Variation [15]
Neurodegeneration with brain iron accumulation 5 DISW9SFJ Strong Genetic Variation [9]
Neurodegenerative disease DISM20FF Strong Biomarker [2]
Neuronal ceroid lipofuscinosis DIS9A4K4 Strong Genetic Variation [16]
Parkinsonian disorder DISHGY45 Strong Genetic Variation [6]
Polyneuropathy DISB9G3W Strong Genetic Variation [6]
Vascular purpura DIS6ZZMF Strong Genetic Variation [8]
Young-onset Parkinson disease DIS05LFS Strong Altered Expression [17]
Amyotrophic lateral sclerosis DISF7HVM moderate Genetic Variation [18]
Atypical juvenile parkinsonism DISYXFE3 moderate Genetic Variation [19]
Dementia DISXL1WY moderate Genetic Variation [20]
Hereditary spastic paraplegia DISGZQV1 moderate Genetic Variation [13]
Idiopathic parkinson disease DIS18PD0 moderate Biomarker [21]
Parkinsonism due to ATP13A2 deficiency DISOMWF3 Supportive Autosomal recessive [22]
Autosomal recessive juvenile Parkinson disease 2 DISNSTD1 Limited Biomarker [23]
Hereditary motor and sensory neuropathy DISR0X2K Limited Genetic Variation [24]
Melanoma DIS1RRCY Limited Genetic Variation [25]
Neuroblastoma DISVZBI4 Limited Genetic Variation [25]
------------------------------------------------------------------------------------
⏷ Show the Full List of 36 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 4 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Hydrogen peroxide DM1NG5W Approved Polyamine-transporting ATPase 13A2 (ATP13A2) decreases the response to substance of Hydrogen peroxide. [2]
MG-132 DMKA2YS Preclinical Polyamine-transporting ATPase 13A2 (ATP13A2) decreases the response to substance of MG-132. [2]
Paraquat DMR8O3X Investigative Polyamine-transporting ATPase 13A2 (ATP13A2) increases the response to substance of Paraquat. [35]
Manganese DMKT129 Investigative Polyamine-transporting ATPase 13A2 (ATP13A2) decreases the response to substance of Manganese. [2]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Polyamine-transporting ATPase 13A2 (ATP13A2). [26]
------------------------------------------------------------------------------------
7 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Polyamine-transporting ATPase 13A2 (ATP13A2). [27]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Polyamine-transporting ATPase 13A2 (ATP13A2). [28]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Polyamine-transporting ATPase 13A2 (ATP13A2). [29]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Polyamine-transporting ATPase 13A2 (ATP13A2). [30]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Polyamine-transporting ATPase 13A2 (ATP13A2). [31]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Polyamine-transporting ATPase 13A2 (ATP13A2). [32]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Polyamine-transporting ATPase 13A2 (ATP13A2). [33]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Characterization of cellular protective effects of ATP13A2/PARK9 expression and alterations resulting from pathogenic mutants. J Neurosci Res. 2012 Dec;90(12):2306-16. doi: 10.1002/jnr.23112. Epub 2012 Jul 30.
3 The strategic function of the P5-ATPase ATP13A2 in toxic waste disposal.Neurochem Int. 2018 Jan;112:108-113. doi: 10.1016/j.neuint.2017.11.008. Epub 2017 Nov 21.
4 Parkinson disease related ATP13A2 evolved early in animal evolution.PLoS One. 2018 Mar 5;13(3):e0193228. doi: 10.1371/journal.pone.0193228. eCollection 2018.
5 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
6 Clinical and ultrastructural findings in an ataxic variant of Kufor-Rakeb syndrome.Folia Neuropathol. 2019;57(3):285-294. doi: 10.5114/fn.2019.88459.
7 Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain. 2017 Feb;140(2):287-305. doi: 10.1093/brain/aww307.
8 Partial loss of ATP13A2 causes selective gliosis independent of robust lipofuscinosis.Mol Cell Neurosci. 2018 Oct;92:17-26. doi: 10.1016/j.mcn.2018.05.009. Epub 2018 Jun 1.
9 Rare causes of dystonia parkinsonism.Curr Neurol Neurosci Rep. 2010 Nov;10(6):431-9. doi: 10.1007/s11910-010-0136-0.
10 Identification of novel loci for pediatric cholestatic liver disease defined by KIF12, PPM1F, USP53, LSR, and WDR83OS pathogenic variants. Genet Med. 2019 May;21(5):1164-1172. doi: 10.1038/s41436-018-0288-x. Epub 2018 Sep 25.
11 Successful treatment of psychosis in a patient with Kufor-Rakeb syndrome with low dose aripiprazole: a case report.Neurocase. 2019 Jun-Aug;25(3-4):133-137. doi: 10.1080/13554794.2019.1625928. Epub 2019 Jun 24.
12 Glucocerebrosidase mutations alter the endoplasmic reticulum and lysosomes in Lewy body disease.J Neurochem. 2012 Oct;123(2):298-309. doi: 10.1111/j.1471-4159.2012.07879.x. Epub 2012 Aug 22.
13 The Parkinson-associated human P5B-ATPase ATP13A2 modifies lipid homeostasis.Biochim Biophys Acta Biomembr. 2019 Oct 1;1861(10):182993. doi: 10.1016/j.bbamem.2019.05.015. Epub 2019 May 24.
14 Iron dysregulation in movement disorders.Neurobiol Dis. 2012 Apr;46(1):1-18. doi: 10.1016/j.nbd.2011.12.054. Epub 2012 Jan 12.
15 Excess iron harms the brain: the syndromes of neurodegeneration with brain iron accumulation (NBIA).J Neural Transm (Vienna). 2013 Apr;120(4):695-703. doi: 10.1007/s00702-012-0922-8. Epub 2012 Dec 2.
16 ATP13A2 missense variant in Australian Cattle Dogs with late onset neuronal ceroid lipofuscinosis.Mol Genet Metab. 2019 May;127(1):95-106. doi: 10.1016/j.ymgme.2018.11.015. Epub 2019 Mar 27.
17 Overlapping expression patterns and functions of three paralogous P5B ATPases in Caenorhabditis elegans.PLoS One. 2018 Mar 16;13(3):e0194451. doi: 10.1371/journal.pone.0194451. eCollection 2018.
18 Mutations in ATP13A2 (PARK9) are associated with an amyotrophic lateral sclerosis-like phenotype, implicating this locus in further phenotypic expansion.Hum Genomics. 2019 Apr 16;13(1):19. doi: 10.1186/s40246-019-0203-9.
19 Novel ATP13A2 (PARK9) homozygous mutation in a family with marked phenotype variability.Neurogenetics. 2011 Feb;12(1):33-9. doi: 10.1007/s10048-010-0259-0. Epub 2010 Sep 21.
20 Overexpression of human Atp13a2Isoform-1 protein protects cells against manganese and starvation-induced toxicity.PLoS One. 2019 Aug 8;14(8):e0220849. doi: 10.1371/journal.pone.0220849. eCollection 2019.
21 ATP13A2 (PARK9) polymorphisms influence the neurotoxic effects of manganese.Neurotoxicology. 2012 Aug;33(4):697-702. doi: 10.1016/j.neuro.2012.01.007. Epub 2012 Jan 20.
22 Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum Mol Genet. 2012 Jun 15;21(12):2646-50. doi: 10.1093/hmg/dds089. Epub 2012 Mar 2.
23 Low doses of paraquat and polyphenols prolong life span and locomotor activity in knock-down parkin Drosophila melanogaster exposed to oxidative stress stimuli: implication in autosomal recessive juvenile parkinsonism.Gene. 2013 Jan 10;512(2):355-63. doi: 10.1016/j.gene.2012.09.120. Epub 2012 Oct 6.
24 Genetic and phenotypic characterization of complex hereditary spastic paraplegia.Brain. 2016 Jul;139(Pt 7):1904-18. doi: 10.1093/brain/aww111. Epub 2016 May 23.
25 ATP13A2/PARK9 regulates endo-/lysosomal cargo sorting and proteostasis through a novel PI(3, 5)P2-mediated scaffolding function.Hum Mol Genet. 2017 May 1;26(9):1656-1669. doi: 10.1093/hmg/ddx070.
26 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
27 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
28 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
29 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
30 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
31 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
32 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
33 Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray. Environ Toxicol. 2017 Jan;32(1):311-328.
34 Characterization of cellular protective effects of ATP13A2/PARK9 expression and alterations resulting from pathogenic mutants. J Neurosci Res. 2012 Dec;90(12):2306-16. doi: 10.1002/jnr.23112. Epub 2012 Jul 30.
35 CHO cells expressing the human P?-ATPase ATP13A2 are more sensitive to the toxic effects of herbicide paraquat. Neurochem Int. 2012 Feb;60(3):243-8. doi: 10.1016/j.neuint.2012.01.002. Epub 2012 Jan 12.