General Information of Drug Off-Target (DOT) (ID: OTOA8WU2)

DOT Name 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B)
Synonyms EC 3.1.4.53; DPDE4; PDE32; cAMP-specific phosphodiesterase 4B
Gene Name PDE4B
UniProt ID
PDE4B_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1F0J ; 1RO6 ; 1RO9 ; 1ROR ; 1TB5 ; 1XLX ; 1XLZ ; 1XM4 ; 1XM6 ; 1XMU ; 1XMY ; 1XN0 ; 1XOS ; 1XOT ; 1Y2H ; 1Y2J ; 2CHM ; 2QYL ; 3D3P ; 3FRG ; 3G45 ; 3GWT ; 3HC8 ; 3HDZ ; 3HMV ; 3KKT ; 3LY2 ; 3O0J ; 3O56 ; 3O57 ; 3W5E ; 3WD9 ; 4KP6 ; 4MYQ ; 4NW7 ; 4WZI ; 4X0F ; 5K6J ; 5LAQ ; 5OHJ ; 6BOJ ; 8OEG
EC Number
3.1.4.53
Pfam ID
PF18100 ; PF00233
Sequence
MKKSRSVMTVMADDNVKDYFECSLSKSYSSSSNTLGIDLWRGRRCCSGNLQLPPLSQRQS
ERARTPEGDGISRPTTLPLTTLPSIAITTVSQECFDVENGPSPGRSPLDPQASSSAGLVL
HATFPGHSQRRESFLYRSDSDYDLSPKAMSRNSSLPSEQHGDDLIVTPFAQVLASLRSVR
NNFTILTNLHGTSNKRSPAASQPPVSRVNPQEESYQKLAMETLEELDWCLDQLETIQTYR
SVSEMASNKFKRMLNRELTHLSEMSRSGNQVSEYISNTFLDKQNDVEIPSPTQKDREKKK
KQQLMTQISGVKKLMHSSSLNNTSISRFGVNTENEDHLAKELEDLNKWGLNIFNVAGYSH
NRPLTCIMYAIFQERDLLKTFRISSDTFITYMMTLEDHYHSDVAYHNSLHAADVAQSTHV
LLSTPALDAVFTDLEILAAIFAAAIHDVDHPGVSNQFLINTNSELALMYNDESVLENHHL
AVGFKLLQEEHCDIFMNLTKKQRQTLRKMVIDMVLATDMSKHMSLLADLKTMVETKKVTS
SGVLLLDNYTDRIQVLRNMVHCADLSNPTKSLELYRQWTDRIMEEFFQQGDKERERGMEI
SPMCDKHTASVEKSQVGFIDYIVHPLWETWADLVQPDAQDILDTLEDNRNWYQSMIPQSP
SPPLDEQNRDCQGLMEKFQFELTLDEEDSEGPEKEGEGHSYFSSTKTLCVIDPENRDSLG
ETDIDIATEDKSPVDT
Function
Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. May be involved in mediating central nervous system effects of therapeutic agents ranging from antidepressants to antiasthmatic and anti-inflammatory agents.
Tissue Specificity Expressed in brain, heart, lung and skeletal muscle . Expressed in white blood cells .; [Isoform PDE4B5]: Brain-specific isoform.
KEGG Pathway
Purine metabolism (hsa00230 )
Metabolic pathways (hsa01100 )
cAMP sig.ling pathway (hsa04024 )
Parathyroid hormone synthesis, secretion and action (hsa04928 )
Morphine addiction (hsa05032 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 3 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Ethanol DMDRQZU Approved 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B) affects the response to substance of Ethanol. [34]
Etoposide DMNH3PG Approved 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B) affects the response to substance of Etoposide. [35]
Methamphetamine DMPM4SK Approved 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B) affects the response to substance of Methamphetamine. [36]
------------------------------------------------------------------------------------
34 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [1]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [2]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [3]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [4]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [5]
Arsenic DMTL2Y1 Approved Arsenic decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [6]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [7]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [8]
Decitabine DMQL8XJ Approved Decitabine affects the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [9]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [10]
Progesterone DMUY35B Approved Progesterone decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [11]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [12]
Niclosamide DMJAGXQ Approved Niclosamide increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [13]
Hydroquinone DM6AVR4 Approved Hydroquinone decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [14]
Cytarabine DMZD5QR Approved Cytarabine increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [15]
Irinotecan DMP6SC2 Approved Irinotecan decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [16]
Ergotidine DM78IME Approved Ergotidine increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [17]
Roflumilast DMPGHY8 Approved Roflumilast decreases the activity of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [18]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [19]
Rigosertib DMOSTXF Phase 3 Rigosertib increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [20]
Bardoxolone methyl DMODA2X Phase 3 Bardoxolone methyl decreases the activity of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [21]
DNCB DMDTVYC Phase 2 DNCB increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [22]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [23]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [24]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [25]
Eugenol DM7US1H Patented Eugenol increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [22]
Cilomilast DMHSM7I Discontinued in Phase 3 Cilomilast decreases the activity of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [26]
Torcetrapib DMDHYM7 Discontinued in Phase 2 Torcetrapib increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [27]
Trequinsin DMQRSMD Terminated Trequinsin decreases the activity of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [18]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [29]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [30]
Lithium chloride DMHYLQ2 Investigative Lithium chloride decreases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [31]
Forskolin DM6ITNG Investigative Forskolin increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [32]
N-(3-METHYLBUT-2-EN-1-YL)-9H-PURIN-6-AMINE DM2D4KY Investigative N-(3-METHYLBUT-2-EN-1-YL)-9H-PURIN-6-AMINE increases the expression of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [33]
------------------------------------------------------------------------------------
⏷ Show the Full List of 34 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of 3',5'-cyclic-AMP phosphodiesterase 4B (PDE4B). [28]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
3 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
4 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
5 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
6 Gene expression profiles in peripheral lymphocytes by arsenic exposure and skin lesion status in a Bangladeshi population. Cancer Epidemiol Biomarkers Prev. 2006 Jul;15(7):1367-75. doi: 10.1158/1055-9965.EPI-06-0106.
7 Arsenic suppresses gene expression in promyelocytic leukemia cells partly through Sp1 oxidation. Blood. 2005 Jul 1;106(1):304-10.
8 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
9 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
10 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
11 Effects of progesterone treatment on expression of genes involved in uterine quiescence. Reprod Sci. 2011 Aug;18(8):781-97.
12 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
13 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
14 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
15 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
16 In vitro and in vivo irinotecan-induced changes in expression profiles of cell cycle and apoptosis-associated genes in acute myeloid leukemia cells. Mol Cancer Ther. 2005 Jun;4(6):885-900.
17 Histamine up-regulates phosphodiesterase 4 activity and reduces prostaglandin E2-inhibitory effects in human neutrophils. Inflamm Res. 2000 Nov;49(11):600-9. doi: 10.1007/s000110050637.
18 Dynamic activation of cystic fibrosis transmembrane conductance regulator by type 3 and type 4D phosphodiesterase inhibitors. J Pharmacol Exp Ther. 2005 Aug;314(2):846-54. doi: 10.1124/jpet.105.083519. Epub 2005 May 18.
19 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
20 ON 01910.Na is selectively cytotoxic for chronic lymphocytic leukemia cells through a dual mechanism of action involving PI3K/AKT inhibition and induction of oxidative stress. Clin Cancer Res. 2012 Apr 1;18(7):1979-91. doi: 10.1158/1078-0432.CCR-11-2113. Epub 2012 Feb 20.
21 Characterization of the potent, selective Nrf2 activator, 3-(pyridin-3-ylsulfonyl)-5-(trifluoromethyl)-2H-chromen-2-one, in cellular and in vivo models of pulmonary oxidative stress. J Pharmacol Exp Ther. 2017 Oct;363(1):114-125.
22 Microarray analyses in dendritic cells reveal potential biomarkers for chemical-induced skin sensitization. Mol Immunol. 2007 May;44(12):3222-33.
23 Effect of benzo[a]pyrene on proliferation and metastasis of oral squamous cell carcinoma cells: A transcriptome analysis based on RNA-seq. Environ Toxicol. 2022 Nov;37(11):2589-2604. doi: 10.1002/tox.23621. Epub 2022 Jul 23.
24 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
25 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
26 Pharmacological profile of a novel phosphodiesterase 4 inhibitor, 4-(8-benzo[1,2,5]oxadiazol-5-yl-[1,7]naphthyridin-6-yl)-benzoic acid (NVP-ABE171), a 1,7-naphthyridine derivative, with anti-inflammatory activities. J Pharmacol Exp Ther. 2002 Apr;301(1):241-8. doi: 10.1124/jpet.301.1.241.
27 Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol. 2012 Dec 10;6:152.
28 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
29 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
30 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
31 Effects of lithium and valproic acid on gene expression and phenotypic markers in an NT2 neurosphere model of neural development. PLoS One. 2013;8(3):e58822.
32 Differential expression of genes coding for EGF-like factors and ADAMTS1 following gonadotropin stimulation in normal and transformed human granulosa cells. Biochem Biophys Res Commun. 2005 Aug 5;333(3):935-43. doi: 10.1016/j.bbrc.2005.04.177.
33 Immediate up-regulation of the calcium-binding protein S100P and its involvement in the cytokinin-induced differentiation of human myeloid leukemia cells. Biochim Biophys Acta. 2005 Sep 10;1745(2):156-65.
34 Substance dependence low-density whole genome association study in two distinct American populations. Hum Genet. 2008 Jun;123(5):495-506. doi: 10.1007/s00439-008-0501-0. Epub 2008 Apr 26.
35 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.
36 Genome-wide association for methamphetamine dependence: convergent results from 2 samples. Arch Gen Psychiatry. 2008 Mar;65(3):345-55. doi: 10.1001/archpsyc.65.3.345.